Calculus 3 - Exam 2 MAT 309, Spring 2021 - D. Ivanšić

\qquad

1. (10pts) Let $f(x, y)=\sqrt{y-x^{2}}$.
a) Find the domain of f.
b) Sketch the contour map for the function, drawing level curves for levels $k=-1,0,1,2$. Note the domain on the picture.
c) Suppose $f(x, y)$ is the temperature at point (x, y) and a heat-seeking insect (always moves in direction of greatest heat increase) starts at point $(1,2)$. Sketch the path the insect will take and explain.
2. (16pts) Let $f(x, y)=x e^{x^{3}+y^{3}}$.
a) At point $(1,0)$, find the directional derivative of f in the direction of $\langle-2,1\rangle$.
b) In what direction is the directional derivative the greatest, and what is its value?
3. (12pts) Consider the elliptical cone $y^{2}+3 z^{2}-x^{2}=0$.
a) Find the equation of the tangent plane to the cone at a generic point $\left(x_{0}, y_{0}, z_{0}\right)$. Simplify the equation, keeping in mind that the point $\left(x_{0}, y_{0}, z_{0}\right)$ satisfies the equation of the cone. b) Show that the tangent plane always contains the origin.
4. (18pts) Let $U=\frac{\ln x}{x y}, x=\sqrt{s t}, y=s^{2}-t^{2}$. Use the chain rule to find $\frac{\partial U}{\partial s}$ when $s=1$, $t=2$.
5. (12pts) The range of a projectile fired at angle α with initial velocity v is given by $R=\frac{v^{2} \sin (2 \alpha)}{10}$ (R is in meters, v in meters per second, α in radians). Use differentials to estimate the change in range of a projectile fired at $40 \mathrm{~m} / \mathrm{s}$ at angle $\frac{\pi}{6}$ if velocity is decreased by 0.2 meters per second, and angle is increased by 0.1 radian.
6. (12pts) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ at the point $\left(0, \frac{\pi}{4}, \frac{\pi}{4}\right)$, if $\tan x+\tan y+\tan z=x y z+2$.
7. (20pts) Find and classify the local extremes for $f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}$.

Bonus (10pts) Let $A=(0,0), B=(1,0)$ and $C=(0,2)$ and let d_{A}, d_{B} and d_{C} represent the distance from a point (x, y) to A, B and C, respectively. Find the absolute maximum and minimum of $d_{A}^{2}+d_{B}^{2}+d_{C}^{2}$ among all points (x, y) in the triangle $A B C$ (edges are included).

