Calculus 3 — Exam 1	Name:
MAT 309, Spring 2021 — D. Ivanšić	Show all your work!

- **1.** (11pts) Let $\mathbf{u} = \langle 1, 3, -1 \rangle$ and $\mathbf{v} = \langle 0, 2, 1 \rangle$.
- a) Calculate $-2\mathbf{u}$, $3\mathbf{v} 4\mathbf{u}$, and $\mathbf{u} \cdot \mathbf{v}$.
- b) Find a vector of length $\sqrt{5}$ in direction of **u**.
- c) If θ is the angle between ${\bf u}$ and ${\bf v},$ find $\cos\theta.$

2. (12pts) In the picture, the vectors \mathbf{u} , \mathbf{v} and \mathbf{w} are mutually perpendicular and all have length 3.

- a) Draw the vector $\mathbf{u} \mathbf{v}$ with its tail coinciding with the other tails.
- b) Which is longer (if any): $\mathbf{u} \times \mathbf{v}$ or $\mathbf{u} \times (\mathbf{u} \mathbf{v})$?
- c) Draw the vector $\mathbf{w} \times (\mathbf{u} \mathbf{v})$. Accurate length is not important.

3. (8pts) Draw the set in \mathbf{R}^3 described by: $x^2 + y^2 + z^2 \ge 1, \ y = x$

4. (12pts) Find the equation of the plane that contains the lines given by parametric equations: x = 1 + 2t, y = -2 - t, z = -3 + 4t and x = 5 - t, y = -4 + 3t, z = 5 + t. (These lines intersect — or they wouldn't determine a plane — but the point of intersection is not needed, so don't look for it.)

- 5. (16pts) This problem is about the surface $x^2 2y^2 + 5z^2 = 0$.
- a) Identify and sketch the intersections of this surface with the coordinate planes.
- b) Sketch the surface in 3D, with coordinate system visible.

6. (14pts) The curve $\mathbf{r}(t) = \langle 2\cos t, 2\sin t, \frac{1}{3}\sin(4t) \rangle$ is given, t any real number.

a) Sketch the curve in the coordinate system.

b) Find parametric equations of the tangent line to this curve when $t = \frac{\pi}{2}$ and sketch the tangent line.

- 7. (13pts) The points A = (1, 3, -2) and B = (4, -1, 3) are given.
- a) Write parametric equations of the line segment AB.
- b) Compute the length of the line segment using the parametrization and arc length formula.
- c) Compare your answer in b) with the distance from A to B.

8. (14pts) An arrow is launched from ground level at a 45° angle with initial speed 50 meters per second.

a) Assuming gravity acts in the usual negative y-direction (let g = 10), find the vector function $\mathbf{r}(t)$ representing the position of the arrow.

- b) Find the range of the arrow.
- c) Find the maximum height the arrow reaches.

Bonus (10pts) Find the parametric equations of the line that is the intersection of the planes x - y + 2z = 2 and x - y - 3z = 6.