
Calculus 3 — Lecture notes
MAT 309, Spring 2022 — D. Ivanšić 13.1 Vector fields

Definition. Let D be a region in R2 or R3. A vector field is a function F that assigns to
every point (x, y) or (x, y, z) in D a 2-dimensional vector F(x, y) or a 3-dimensional vector
F(x, y, z). Often we write F(x) in vector notation.

Example. Sketch the 2-dimensional vector fields.

F(x, y) = x i+ y j, or F (x) = x F1(x, y) =
x√

x2 + y2
i+

y√
x2 + y2

j, or F1(x) =
x

|x|

Example. Sketch the 2-dimensional vector fields.

F(x, y) = −y i+ x j F1(x, y) = − y

x2 + y2
i+

x

x2 + y2
j

Example. The 3-dimensional gravita-

tional vector field G(x) = −GMm

|x|3
x gives

the force of gravity from an object of mass
M placed at the origin on an object of mass
m at position x. (G is the gravitational
constant.)
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Example. Let a be a constant vector
in R3. We may define the vector field
F(x) = a× x. Note that each vector F(x)
is perpendicular to both a and x. The vec-
tors of the field are all in planes perpen-
dicular to a and are the same in all those
planes.

Example. Consider the velocity field of
a gas flow, assuming it does not vary with
time, for example flow of air around a wing
flying at constant speed.

Example. If f is a scalar function then ∇f is a vector field. Draw the vector field ∇f if
f(x) = |x|2.

Note. The vector field ∇f is perpendicular to level curves (surfaces) of f .
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Definition. If F is a vector field such that there exists a function f so that ∇f = F, we
say that F is conservative. In this case, f is called the potential function of F.

Example. The gravitational vector field G(x) = −GMm

|x|3
x is conservative, its potential

function is g(x) =
GMm

|x|

Ch.13-3



Calculus 3 — Lecture notes
MAT 309, Spring 2022 — D. Ivanšić 13.2 Line Integrals

Example. Consider f(x, y) = xy and the curve C, part of y = x2 from (0, 0) to (1, 1). We
wish to define the integral of f over C,

∫
C
f(x, y).

Try different parametrizations of C and compute
∫
C
f(x, y) in a naive way.

x = t, y = t2, 0 ≤ t ≤ 1:

x = t2, y = t4, 0 ≤ t ≤ 1:

Problem:
∫
C
f(x, y) computed in this way depends on the parametrization, and something

called
∫
C
f(x, y) ought to depend only on the curve C.

Definition. Let a curve C be parametrized by x = x(t), y = y(t), a ≤ t ≤ b. We define the
line integral of f over C as:∫

C

f ds =

∫ b

a

f(x(t), y(t))
√

x′(t)2 + y′(t)2 dt

Example. Do the two parametrizations above give the same integral under this definition?

x = t, y = t2, 0 ≤ t ≤ 1:

x = t2, y = t4, 0 ≤ t ≤ 1:

The same idea as in the example can be used to prove the general fact: the line integral∫
C
f ds does not depend on the parametrization, as long as C is traversed exactly once.
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Note.
∫
C
1 ds = length of C.

Note.

∫
C

f ds =

∫ b

a

f(r(t))|r′(t)| dt in vector notation, which easily generalizes the defini-

tion to curves and functions in space.

Definition. If C is piecewise smooth, that is, it consists of smooth curves C1, C2, . . . , Cn

that are in a chain, then∫
C

f ds =

∫
C1

f ds+

∫
C2

f ds+ · · ·+
∫
Cn

f ds

Example. How much work is done by gravity as a roller-coaster wagon descends from A to
B along curve C?

Note that only the component of the force in direction of motion does work.

The component of F in direction of the unit tangent vector T is (F ·T)T, so amount of force
in direction T is F ·T. Since work = force × distance, to get total work done on curve C,
we do

∫
C
F ·T ds, as the ds part includes the distance factor |r′(t)|.

If the curve C is given by r(t), a ≤ t ≤ b, we compute:∫
C

F ·T ds =
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Definition. Let a curve C be parametrized by r(t), a ≤ t ≤ b, and let F be a vector field.
We define the line integral of F over C as:∫

C

F· dr =
∫ b

a

F(r(t))·r′(t) dt

which does not depend on the parametrization of C.

Interpretation:

∫
C

F· dr is work done by force field F acting on an object as it moves along

curve C.

Example. Evaluate

∫
C

F· dr where C is the helix x = cos t, y = sin t, z = 3t, 0 ≤ t ≤ 2π

and F(x, y, z) = −y i+ x j+ k.

We know that the answer has to be positive, since the angle between force and tangent is

less than
π

2
. If the object had traveled in the opposite direction, we would have gotten

W =

∫
C

F· dr < 0, since force acts against movement of object.
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The changing of the sign of work when we reverse direction of travel along C illustrates the
following general fact. ∫

−C

F· dr = −
∫
C

F· dr

where −C is the curve parametrized in the opposite direction. For an example where the
parametrization of −C is simple, take r(t), 0 ≤ t ≤ a as the parametrization of C. Then
−C is parametrized by r(a− t), 0 ≤ t ≤ a.

Notation. Let F = P i + Q j + Rk, shorthand for F(x, y, z) = P (x, y, z) i + Q(x, y, z) j +
R(x, y, z)k. We then write ∫

C

F· dr =
∫
C

P dx+Qdy +Rdz
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13.3 The Fundamental

Theorem for Line Integrals

Theorem. Let r(t), a ≤ t ≤ b, be a smooth curve, r(a) = A, r(b) = B and let f be
differentiable, with ∇f continuous. Then∫

C

∇f · dr = f(r(b)− f(r(a)) = f(B)− f(A)

Proof.

Example. What work is done by the gravitational vector field G(x) = −GMm

|x|3
x along a

path from (1, 0, 0) to (1, 1, 3)?

Independence of path

Suppose F is defined on some domain D and let C be any

path in D joining points A and B. In general,

∫
C

F· dr

depends on C, so usually

∫
C1

F· dr ̸=
∫
C2

F· dr.

If F is conservative, F = ∇f , so by the fundamental

theorem for line integrals

∫
C

F· dr = f(B) − f(A), that

is,

∫
C

F· dr does not depend on the path C.
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Definition. A closed path is a path with the same initial and terminal points.

Note.

∫
C

F· dr does not depend on path if and only if

∫
C

F· dr = 0 for every closed path C.

Proof.

Definition. A set is D in R2 or R3 is open if for every point P in D there is an open disk
(ball) centered at P that is contained in D.

Examples.

Definition. A set is D in R2 or R3 is connected if every two points in D can be connected
by a path inside D.

Examples.
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Theorem. Let F be a vector field that is continuous on an open and connected region D.

If

∫
C

F· dr is independent of path, then there exists a function f defined on D, such that

∇f = F.

Idea of proof.

Let F = P i+Q j be a conservative field in the plane. Show that
∂P

∂y
=

∂Q

∂x
.

Example. Does the converse hold, that is, if
∂P

∂y
=

∂Q

∂x
, is F conservative? Consider

F (x, y) = − y

x2 + y2
i+

x

x2 + y2
j.

a) Show that
∂P

∂y
=

∂Q

∂x
. b) Show that

∫
C

F· dr = 2π on the unit circle C.

c) Conclude something.
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The issue that keeps F from being conservative is that its domain is not simply-connected,
that is, it has a “hole.”

Definition. A curve is simple if it has no self-intersection.

Definition. A region D in R2 is simply-connected if
1) it is connected, and
2) every simple closed curve in D encloses points only in D.

Examples.

Theorem. Let F = P i+Q j be a vector field defined on an open, simply-connected planar

region D, and suppose P and Q have continuous partial derivatives. If
∂P

∂y
=

∂Q

∂x
, then F

is conservative.

Example. Are the following fields conservative? If so, find their potential function.

F(x, y) = y2 i+ x2 j F(x, y) = (1 + 3x2y) i+ (x3 − y2) j
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A simple closed curve C in a plane divides
the plane into two parts, bounded (D) and
unbounded (outside of D). The positive
orientation of C is the counterclockwise di-
rection, or, more precisely: if we were to
walk around the curve, the outside is on
the right.

Green’s Theorem. Let C be a positively oriented piecewise smooth simple closed curve
in the plane, and let D be the region bounded by C. If P and Q have continuous partial
derivatives on an open region containing D, then∫

C

P dx+Qdy =

∫∫
D

∂Q

∂x
− ∂P

∂y
dA

Note. We often use notation

∮
C

to indicate we are integrating over a simple closed curve

in a positive direction.

Example. Compute

∮
C

x3 dx+xy2 dy, where C consists of sides of the triangle with vertices

(0, 0), (1, 1) and (0, 2).
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Reading Green’s theorem right to left, we see that we can transform a double integral of a
particular form into a single integral.

Thus, if C is boundary of D, Area(D) =

∮
C

x dy = −
∮
C

y dx =
1

2

∮
C

x dy − y dx.

Example. Use the above to find the area of the astroid x
2
3 + y

2
3 = a

2
3 .

Example. Green’s theorem can be used to prove: if
∂P

∂y
=

∂Q

∂x
on a simply-connected

region D, then F = P i+Q j is conservative.

Ch.13-13



Example. Green’s theorem can be used also for a region with holes. In this picture,∮
C1∪C2

P dx+Qdy =

∫∫
D

∂Q

∂x
− ∂P

∂y
dA

Example. Green’s theorem can be used to simplify the curve of integration in

∫
C

F· dr

when
∂P

∂y
=

∂Q

∂x
. Let F (x, y) = − y

x2 + y2
i+

x

x2 + y2
j, and let C be any simple closed curve

that encloses the origin, oriented counterclockwise, Show that

∫
C

F· dr = 2π

What is

∫
C

F· dr for any simple closed curve that does not enclose the origin?
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Note pattern of fundamental theorems in calculus:∫
region

some kind of derivative of F = some kind of value of F |boundary of region

Observe this in:

Fundamental Theorem of Calculus

Fundamental Theorem of Line Integrals

Green’s Theorem
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