Calculus 3 - Lecture notes

MAT 309, Spring 2022 - D. Ivanšić

13.1 Vector fields

Definition. Let D be a region in \mathbf{R}^{2} or \mathbf{R}^{3}. A vector field is a function \mathbf{F} that assigns to every point (x, y) or (x, y, z) in D a 2 -dimensional vector $\mathbf{F}(x, y)$ or a 3 -dimensional vector $\mathbf{F}(x, y, z)$. Often we write $\mathbf{F}(\mathbf{x})$ in vector notation.

Example. Sketch the 2-dimensional vector fields.
$\mathbf{F}(x, y)=x \mathbf{i}+y \mathbf{j}$, or $F(\mathbf{x})=\mathbf{x}$

$$
\mathbf{F}_{1}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}} \mathbf{i}+\frac{y}{\sqrt{x^{2}+y^{2}}} \mathbf{j}, \text { or } F_{1}(\mathbf{x})=\frac{\mathbf{x}}{|\mathbf{x}|}
$$

Example. Sketch the 2-dimensional vector fields.
$\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}$

$$
F_{1}(x, y)=-\frac{y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j}
$$

Example. The 3-dimensional gravitational vector field $\mathbf{G}(\mathbf{x})=-\frac{G M m}{|\mathbf{x}|^{3}} \mathbf{x}$ gives the force of gravity from an object of mass M placed at the origin on an object of mass m at position \mathbf{x}. (G is the gravitational constant.)

Example. Let a be a constant vector in \mathbf{R}^{3}. We may define the vector field $\mathbf{F}(\mathbf{x})=\mathbf{a} \times \mathbf{x}$. Note that each vector $\mathbf{F}(\mathbf{x})$ is perpendicular to both a and \mathbf{x}. The vectors of the field are all in planes perpendicular to a and are the same in all those planes.

Example. Consider the velocity field of a gas flow, assuming it does not vary with time, for example flow of air around a wing flying at constant speed.

Example. If f is a scalar function then ∇f is a vector field. Draw the vector field ∇f if $f(\mathbf{x})=|\mathbf{x}|^{2}$.

Note. The vector field ∇f is perpendicular to level curves (surfaces) of f.

Definition. If \mathbf{F} is a vector field such that there exists a function f so that $\nabla f=\mathbf{F}$, we say that \mathbf{F} is conservative. In this case, f is called the potential function of \mathbf{F}.

Example. The gravitational vector field $\mathbf{G}(\mathbf{x})=-\frac{G M m}{|\mathbf{x}|^{3}} \mathbf{x}$ is conservative, its potential function is $g(\mathbf{x})=\frac{G M m}{|\mathbf{x}|}$

Calculus 3 - Lecture notes

 MAT 309, Spring 2022 - D. Ivanšić
13.2 Line Integrals

Example. Consider $f(x, y)=x y$ and the curve C, part of $y=x^{2}$ from $(0,0)$ to $(1,1)$. We wish to define the integral of f over $C, \int_{C} f(x, y)$.

Try different parametrizations of C and compute $\int_{C} f(x, y)$ in a naive way.
$x=t, y=t^{2}, 0 \leq t \leq 1:$
$x=t^{2}, y=t^{4}, 0 \leq t \leq 1:$
Problem: $\int_{C} f(x, y)$ computed in this way depends on the parametrization, and something called $\int_{C} f(x, y)$ ought to depend only on the curve C.

Definition. Let a curve C be parametrized by $x=x(t), y=y(t), a \leq t \leq b$. We define the line integral of f over C as:

$$
\int_{C} f d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

Example. Do the two parametrizations above give the same integral under this definition?
$x=t, y=t^{2}, 0 \leq t \leq 1:$
$x=t^{2}, y=t^{4}, 0 \leq t \leq 1:$

The same idea as in the example can be used to prove the general fact: the line integral $\int_{C} f d s$ does not depend on the parametrization, as long as C is traversed exactly once.

Note. $\int_{C} 1 d s=$ length of C.
Note. $\int_{C} f d s=\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t$ in vector notation, which easily generalizes the definition to curves and functions in space.

Definition. If C is piecewise smooth, that is, it consists of smooth curves $C_{1}, C_{2}, \ldots, C_{n}$ that are in a chain, then

$$
\int_{C} f d s=\int_{C_{1}} f d s+\int_{C_{2}} f d s+\cdots+\int_{C_{n}} f d s
$$

Example. How much work is done by gravity as a roller-coaster wagon descends from A to B along curve C ?

Note that only the component of the force in direction of motion does work.
The component of \mathbf{F} in direction of the unit tangent vector \mathbf{T} is $(\mathbf{F} \cdot \mathbf{T}) \mathbf{T}$, so amount of force in direction \mathbf{T} is $\mathbf{F} \cdot \mathbf{T}$. Since work $=$ force \times distance, to get total work done on curve C, we do $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$, as the $d s$ part includes the distance factor $\left|\mathbf{r}^{\prime}(t)\right|$.

If the curve C is given by $\mathbf{r}(t), a \leq t \leq b$, we compute:
$\int_{C} \mathbf{F} \cdot \mathbf{T} d s=$

Definition. Let a curve C be parametrized by $\mathbf{r}(t), a \leq t \leq b$, and let \mathbf{F} be a vector field. We define the line integral of \mathbf{F} over C as:

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

which does not depend on the parametrization of C.
Interpretation: $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is work done by force field \mathbf{F} acting on an object as it moves along curve C.

Example. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the helix $x=\cos t, y=\sin t, z=3 t, 0 \leq t \leq 2 \pi$ and $\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j}+\mathbf{k}$.

We know that the answer has to be positive, since the angle between force and tangent is less than $\frac{\pi}{2}$. If the object had traveled in the opposite direction, we would have gotten $W=\int_{C} \mathbf{F} \cdot d \mathbf{r}<0$, since force acts against movement of object.

The changing of the sign of work when we reverse direction of travel along C illustrates the following general fact.

$$
\int_{-C} \mathbf{F} \cdot d \mathbf{r}=-\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where $-C$ is the curve parametrized in the opposite direction. For an example where the parametrization of $-C$ is simple, take $\mathbf{r}(t), 0 \leq t \leq a$ as the parametrization of C. Then $-C$ is parametrized by $\mathbf{r}(a-t), 0 \leq t \leq a$.

Notation. Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$, shorthand for $\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+$ $R(x, y, z) \mathbf{k}$. We then write

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P d x+Q d y+R d z
$$

Calculus 3 - Lecture notes MAT 309, Spring 2022 - D. Ivanšić

13.3 The Fundamental

Theorem for Line Integrals

Theorem. Let $\mathbf{r}(t), a \leq t \leq b$, be a smooth curve, $\mathbf{r}(a)=A, \mathbf{r}(b)=B$ and let f be differentiable, with ∇f continuous. Then

$$
\int_{C} \nabla f \cdot d \mathbf{r}=f(\mathbf{r}(b)-f(\mathbf{r}(a))=f(B)-f(A)
$$

Proof.

Example. What work is done by the gravitational vector field $\mathbf{G}(\mathbf{x})=-\frac{G M m}{|\mathbf{x}|^{3}} \mathbf{x}$ along a path from $(1,0,0)$ to $(1,1,3)$?

Independence of path

Suppose \mathbf{F} is defined on some domain D and let C be any path in D joining points A and B. In general, $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ depends on C, so usually $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r} \neq \int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$.

If \mathbf{F} is conservative, $\mathbf{F}=\nabla f$, so by the fundamental theorem for line integrals $\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(B)-f(A)$, that is, $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ does not depend on the path C.

Definition. A closed path is a path with the same initial and terminal points.
Note. $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ does not depend on path if and only if $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for every closed path C. Proof.

Definition. A set is D in \mathbf{R}^{2} or \mathbf{R}^{3} is open if for every point P in D there is an open disk (ball) centered at P that is contained in D.

Examples.

Definition. A set is D in \mathbf{R}^{2} or \mathbf{R}^{3} is connected if every two points in D can be connected by a path inside D.

Examples.

Theorem. Let \mathbf{F} be a vector field that is continuous on an open and connected region D. If $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path, then there exists a function f defined on D, such that $\nabla f=\mathbf{F}$.

Idea of proof.

Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ be a conservative field in the plane. Show that $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$.

Example. Does the converse hold, that is, if $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$, is \mathbf{F} conservative? Consider $F(x, y)=-\frac{y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j}$.
a) Show that $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} . \quad$ b) Show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=2 \pi$ on the unit circle C.
c) Conclude something.

The issue that keeps \mathbf{F} from being conservative is that its domain is not simply-connected, that is, it has a "hole."

Definition. A curve is simple if it has no self-intersection.
Definition. A region D in \mathbf{R}^{2} is simply-connected if

1) it is connected, and
2) every simple closed curve in D encloses points only in D.

Examples.

Theorem. Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ be a vector field defined on an open, simply-connected planar region D, and suppose P and Q have continuous partial derivatives. If $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$, then \mathbf{F} is conservative.

Example. Are the following fields conservative? If so, find their potential function.
$\mathbf{F}(x, y)=y^{2} \mathbf{i}+x^{2} \mathbf{j}$

$$
\mathbf{F}(x, y)=\left(1+3 x^{2} y\right) \mathbf{i}+\left(x^{3}-y^{2}\right) \mathbf{j}
$$

Calculus 3 - Lecture notes

 MAT 309, Spring 2022 - D. Ivanšić
13.4 Green's Theorem

A simple closed curve C in a plane divides the plane into two parts, bounded (D) and unbounded (outside of D). The positive orientation of C is the counterclockwise direction, or, more precisely: if we were to walk around the curve, the outside is on the right.

Green's Theorem. Let C be a positively oriented piecewise smooth simple closed curve in the plane, and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region containing D, then

$$
\int_{C} P d x+Q d y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A
$$

Note. We often use notation \oint_{C} to indicate we are integrating over a simple closed curve in a positive direction.

Example. Compute $\oint_{C} x^{3} d x+x y^{2} d y$, where C consists of sides of the triangle with vertices $(0,0),(1,1)$ and $(0,2)$.

Reading Green's theorem right to left, we see that we can transform a double integral of a particular form into a single integral.

Thus, if C is boundary of $D, \operatorname{Area}(D)=\oint_{C} x d y=-\oint_{C} y d x=\frac{1}{2} \oint_{C} x d y-y d x$.

Example. Use the above to find the area of the astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$.

Example. Green's theorem can be used to prove: if $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ on a simply-connected region D, then $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ is conservative.

Example. Green's theorem can be used also for a region with holes. In this picture,

$$
\oint_{C_{1} \cup C_{2}} P d x+Q d y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A
$$

Example. Green's theorem can be used to simplify the curve of integration in $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ when $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$. Let $F(x, y)=-\frac{y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j}$, and let C be any simple closed curve that encloses the origin, oriented counterclockwise, Show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=2 \pi$

What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for any simple closed curve that does not enclose the origin?

Note pattern of fundamental theorems in calculus:

$$
\int_{\text {region }} \text { some kind of derivative of } F=\text { some kind of value of }\left.F\right|_{\text {boundary of region }}
$$

Observe this in:
Fundamental Theorem of Calculus

Fundamental Theorem of Line Integrals

Green's Theorem

