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MAT 309, Spring 2022 — D. Ivanšić

12.1 Double integrals

over rectangles

Recall the definition of the definite integral, inspired by trying to find the area under a curve:

∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗
i )∆x, if the limit exists, and it does for a wide class of functions

(e.g. continuous).

Now let f(x, y) be a function of two variables and consider a rectangle R = [a, b] × [c, d] in
the plane. Subdivide [a, b] and [c, d] into m and n subintervals of equal length.

Form the double Riemann sum
m∑
i=1

n∑
j=1

f(x∗
ij, y

∗
ij)∆A, where ∆A = ∆x∆y, area of the ij-th rectangle

and consider what happens to the expression when m,n → ∞. If the limit exists, it is called
the double integral of f over the rectangle R. We define:∫∫

R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗
ij, y

∗
ij)∆A
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Interpretation of

∫∫
R

f(x, y) dA for f(x, y) ≥ 0.

m∑
i=1

n∑
j=1

f(x∗
ij, y

∗
ij)∆A approximates

the volume under the surface
z = f(x, y). Letting m,n → ∞
improves the approximation, so

∫∫
R

f(x, y) dA = volume under the surface z = f(x, y) and above the xy-plane

If f(x, y) < 0 for some (x, y), the
double integral counts volume above
the xy-plane as positive and volume
below the xy-plane as negative.

To see how to compute
∫∫

R
f(x, y) dA, let f(x, y) ≥ 0 on R. Then

∫∫
R
f(x, y) dA is the

volume under the surface z = f(x, y).
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Fubini’s Theorem. If f(x, y) is continuous on the rectangle R = [a, b]× [c, d], then∫∫
R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy

This is also true if f is bounded on R and discontinuous only on a finite number of curves
and the iterated integrals exist.

Example. Find the volume under the paraboloid z = x2 + 3y2 above the rectangle
[−1, 3]× [−2, 2].
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Example. Compute

∫∫
R

y cos(xy) dA, where R = [1, 2]× [0, π].
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12.2 Double Integrals

over General Regions

Let f be defined on D, a bounded region in R2. We would like to define

∫∫
D

f(x, y) dA.

We now define a function on some rectangle R that contains D:

F (x, y) =

{
f(x, y), if (x, y) is in D

0, if (x, y) is not in D
and set

∫∫
D

f(x, y) dA =

∫∫
R

F (x, y) dA

This makes sense because the value 0 does not contribute to the integral (consider volume
under surface).

Typical regions of integration are:

Type 1 region of integration — between graphs of two functions of x.

Therefore,

∫∫
f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx for type 1 region.

Ch.12-5



Example. Evaluate
∫∫

D
x(y−1) dA if D is the region bounded by curves y = x2+1, y = 2x

and x = 0.

Type 2 region of integration — between graphs of two functions of y.

∫∫
f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy for type 2 region.
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Example. Evaluate
∫∫

D
y dA if D is the region bounded by curves x = y2+2y and y = x−2.
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Example. Evaluate the integral

∫ 1

0

∫ 3

3y

ex
2

dx dy by changing the order of integration.

Properties of double integrals

∫∫
D

f(x, y) + g(x, y) dA =

∫∫
D

f(x, y) dA+

∫∫
D

g(x, y) dA∫∫
D

cf(x, y) dA = c

∫∫
D

f(x, y) dA

If f(x, y) ≥ g(x, y) for all (x, y) in D, then∫∫
D

f(x, y) dA ≥
∫∫

D

g(x, y) dA

If D = D1 ∪D2 and D1 and D2 do not overlap, except on their boundaries, then∫∫
D1

f(x, y) +

∫∫
D2

f(x, y) dA =

∫∫
D

f(x, y) dA
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∫∫
D

1 dA = area of the region D

If m ≤ f(x, y) ≤ M for all (x, y) in D, then

m · area(D) ≤
∫∫

D

f(x, y) dA ≤ M · area(D)
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12.3 Double Integrals

in Polar Coordinates

Recall polar coordinates in the plane: r = distance from the origin
θ = angle with positive x-axis

x = r cos θ
y = r sin θ

Consider integrals over the region D that is a “polar rectangle:” a ≤ r ≤ b and α ≤ θ ≤ β.

If f is continuous on the polar rectangle D, then∫∫
D

f(x, y) dA =

∫ β

α

∫ b

a

f(r cos θ, r sin θ) r dr dθ

Reason:
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Example. Compute the area of a disk of radius R.

The double integral over a more general polar region between rays θ = α, θ = β and polar
curves r = h1(θ) and r = h2(θ) is given by∫∫

D

f(x, y) dA =

∫ β

α

∫ h2(θ)

h1(θ)

f(r cos θ, r sin θ)r dr dθ

Recall some standard polar curves:

r = a cos θ
r = a sin θ

}
is a circle through origin, tangent to an axis, traversed once for 0 ≤ θ ≤ π

r = a cos(nθ)
r = a sin(nθ)

}
is a rose with

{
n petals, if n is odd (traversed once for 0 ≤ θ ≤ π)
2n petals, if n is even (traversed once for 0 ≤ θ ≤ 2π)

r = a(1± cos θ)
r = a(1± sin θ)

}
is a cardiod, traversed once for 0 ≤ θ ≤ 2π
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Example. Find the volume under the cone z =
√

x2 + y2 above the rose r = sin(2θ).

Example. Find the integral
∫∫

D
y dA if D = {(x, y) | x2 + (y − 1)2 ≤ 1 and x2 + y2 ≥ 1}.
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The triple integral is defined much like the double integral. Suppose f(x, y, z) is defined on
a rectangular box B = [a, b]× [c, d]× [r, s]. Subdivide

[a, b] into l pieces of width ∆x
[c, d] into m pieces of width ∆y
[r, s] into n pieces of width ∆z

Choose point (x∗
ijk, y

∗
ijk, z

∗
ijk) in subbox Bijk, form the triple Riemann sum

l∑
i=1

m∑
j=1

n∑
k=1

f(x∗
ijk, y

∗
ijk, z

∗
ijk)∆V, where ∆V = ∆x∆y∆z, volume of the ijk-th subbox

and consider what happens to the expression when l,m, n → ∞. If the limit exists, it is
called the triple integral of f over the rectangular box B. We define:∫∫∫

B

f(x, y, z) dV = lim
l,m,n→∞

l∑
i=1

m∑
j=1

n∑
k=1

f(x∗
ijk, y

∗
ijk, z

∗
ijk)∆V

Fubini’s Theorem. If f(x, y, z) is continuous on the rectangular box B = [a, b]×[c, d]×[r, s],
then ∫∫∫

B

f(x, y, z) dV =

∫ b

a

∫ d

c

∫ s

r

f(x, y, z) dz dy dx =

∫∫
R

∫ s

r

f(x, y, z) dz dA

where R = [a, b]× [c, d]. Five other orders of integrals are valid, too.

To integrate over a general bounded 3-dimensional region E, enclose it in a box B and define,
like before ∫∫∫

E

f(x, y, z) dV =

∫∫∫
B

F (x, y, z) dV

Note.
∫∫∫

E
1 dV = volume of E.
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Typical regions of integration are:

Type 1 region of integration — between
graphs of two functions of x, y over region D in
xy-plane∫∫∫

E

f(x, y, z) dV =

∫∫
D

∫ u2(x,y)

u1(x,y)

f(x, y, z) dz dA

The inside-most integral by z becomes some func-
tion G(x, y), whose integral

∫∫
D
G(x, y) dA is re-

solved in established ways.

Example. Compute
∫∫∫

E
x dV , if E is the region below the plane 2x + y − z = −1, above

the plane z = −1, and inside the cylinder bounded by surfaces y = x2, x = 1 and y = 0.
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Type 2 region of integration — between
graphs of two functions of y, z over region D in
yz-plane∫∫∫

E

f(x, y, z) dV =

∫∫
D

∫ u2(y,z)

u1(y,z)

f(x, y, z) dx dA

Type 3 region of integration — between
graphs of two functions of x, z over region D in
xz-plane∫∫∫

E

f(x, y, z) dV =

∫∫
D

∫ u2(x,z)

u1(x,z)

f(x, y, z) dy dA

Example. Find the volume of the solid inside both y = x2 + z2 − 1 and x2 + y2 + z2 = 7.
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Example. Express the integral
∫∫∫

E
f(x, y, z) dV in six different ways, where E is bounded

by the surfaces z = 0, z = y and x2 = 1− y.
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12.6-7 Cylindrical and

Spherical Coordinates

Cylindrical Coordinates

We obtain cylindrical coordinates (r, θ, z) by putting a polar coordinate system in the xy-
plane and retaining z.

x = r cos θ r =
√
x2 + y2

y = r sin θ tan θ =
y

x
z = z z = z

Example. Convert coordinates.(
1,

3π

4
,−3

)
→ Cartesian (−5,−3, 6) → cylindrical

Example. Sketch the surfaces.

r = r0 θ = θ0 z = z0

Example. Sketch the surface r2 + z2 = 16.
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Spherical Coordinates

In spherical coordinates (ρ, θ, ϕ), ρ ≥ 0 is distance from origin, θ has same meaning as in
cylindrical coordinates and ϕ is angle from positive z-axis (0 ≤ ϕ ≤ π).

x = ρ sinϕ cos θ
y = ρ sinϕ sin θ
z = ρ cosϕ

Note that
r = ρ sinϕ

ρ =
√

x2 + y2 + z2

tan θ =
y

x

cosϕ =
z

ρ

Example. Convert coordinates.(
3,

π

4
,
2π

3

)
→ Cartesian (−

√
3, 1, 2

√
3) → spherical

Example. Sketch the surfaces.

ρ = ρ0 θ = θ0 ϕ = ϕ0

Example. Sketch the surface ρ = sinϕ.
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Triple integrals in cylindrical coordinates. If E is the region between surfaces z =
u1(x, y) and z = u2(x, y) whose projection to the xy-plane is the polar region α ≤ θ ≤ β,
h1(θ) ≤ r ≤ h2(θ), then∫∫∫

E

f(x, y, z) dV =

∫ β

α

∫ h2(θ)

h1(θ)

∫ u2(r cos θ,r sin θ)

u1(r cos θ,r sin θ)

f(r cos θ, r sin θ, z) r dz dr dθ

Example. Find the volume cut out of a ball of radius b by a cylinder of radius a (a < b)
whose axis contains a diameter of the ball.
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Triple integrals in spherical coordinates. If E is the spherical wedge a ≤ ρ ≤ b,
α ≤ θ ≤ β, c ≤ ϕ ≤ d, then∫∫∫

E

f(x, y, z) dV =

∫ d

c

∫ β

α

∫ b

a

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) ρ2 sinϕ dρ dθ dϕ

Example. Find
∫∫∫

E
z2 dV if E is the upper half of the ball x2 + y2 + z2 ≤ 4.
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Example. Find the volume inside the cone z2 = 3x2+3y2 and the sphere x2+y2+(z−1)2 = 1.
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