Calculus 3 - Lecture notes MAT 309, Spring 2022 - D. Ivanšić

12.1 Double integrals over rectangles

Recall the definition of the definite integral, inspired by trying to find the area under a curve:
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$, if the limit exists, and it does for a wide class of functions (e.g. continuous).

Now let $f(x, y)$ be a function of two variables and consider a rectangle $R=[a, b] \times[c, d]$ in the plane. Subdivide $[a, b]$ and $[c, d]$ into m and n subintervals of equal length.

Form the double Riemann sum

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A, \text { where } \Delta A=\Delta x \Delta y, \text { area of the } i j \text {-th rectangle }
$$

and consider what happens to the expression when $m, n \rightarrow \infty$. If the limit exists, it is called the double integral of f over the rectangle R. We define:

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

Interpretation of $\iint_{R} f(x, y) d A$ for $f(x, y) \geq 0$.
$\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \quad$ approximates the volume under the surface $z=f(x, y)$. Letting $m, n \rightarrow \infty$ improves the approximation, so

$$
\iint_{R} f(x, y) d A=\text { volume under the surface } z=f(x, y) \text { and above the } x y \text {-plane }
$$

If $f(x, y)<0$ for some (x, y), the double integral counts volume above the $x y$-plane as positive and volume below the $x y$-plane as negative.

To see how to compute $\iint_{R} f(x, y) d A$, let $f(x, y) \geq 0$ on R. Then $\iint_{R} f(x, y) d A$ is the volume under the surface $z=f(x, y)$.

Fubini's Theorem. If $f(x, y)$ is continuous on the rectangle $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

This is also true if f is bounded on R and discontinuous only on a finite number of curves and the iterated integrals exist.

Example. Find the volume under the paraboloid $z=x^{2}+3 y^{2}$ above the rectangle $[-1,3] \times[-2,2]$.

Example. Compute $\iint_{R} y \cos (x y) d A$, where $R=[1,2] \times[0, \pi]$.

Calculus 3 - Lecture notes

 MAT 309, Spring 2022 - D. Ivanšić
12.2 Double Integrals over General Regions

Let f be defined on D, a bounded region in \mathbf{R}^{2}. We would like to define $\iint_{D} f(x, y) d A$.

We now define a function on some rectangle R that contains D :

$$
F(x, y)=\left\{\begin{array}{cl}
f(x, y), & \text { if }(x, y) \text { is in } D \\
0, & \text { if }(x, y) \text { is not in } D
\end{array} \text { and set } \iint_{D} f(x, y) d A=\iint_{R} F(x, y) d A\right.
$$

This makes sense because the value 0 does not contribute to the integral (consider volume under surface).

Typical regions of integration are:
Type 1 region of integration - between graphs of two functions of x.

Therefore, $\iint f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x$ for type 1 region.

Example. Evaluate $\iint_{D} x(y-1) d A$ if D is the region bounded by curves $y=x^{2}+1, y=2 x$ and $x=0$.

Type 2 region of integration - between graphs of two functions of y.
$\iint f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y$ for type 2 region.

Example. Evaluate $\iint_{D} y d A$ if D is the region bounded by curves $x=y^{2}+2 y$ and $y=x-2$.

Example. Evaluate the integral $\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y$ by changing the order of integration.

Properties of double integrals

$$
\begin{gathered}
\iint_{D} f(x, y)+g(x, y) d A=\iint_{D} f(x, y) d A+\iint_{D} g(x, y) d A \\
\iint_{D} c f(x, y) d A=c \iint_{D} f(x, y) d A
\end{gathered}
$$

If $f(x, y) \geq g(x, y)$ for all (x, y) in D, then

$$
\iint_{D} f(x, y) d A \geq \iint_{D} g(x, y) d A
$$

If $D=D_{1} \cup D_{2}$ and D_{1} and D_{2} do not overlap, except on their boundaries, then

$$
\iint_{D_{1}} f(x, y)+\iint_{D_{2}} f(x, y) d A=\iint_{D} f(x, y) d A
$$

$$
\iint_{D} 1 d A=\text { area of the region } D
$$

If $m \leq f(x, y) \leq M$ for all (x, y) in D, then

$$
m \cdot \operatorname{area}(D) \leq \iint_{D} f(x, y) d A \leq M \cdot \operatorname{area}(D)
$$

Calculus 3 - Lecture notes

 MAT 309, Spring 2022 - D. Ivanšić
12.3 Double Integrals in Polar Coordinates

Recall polar coordinates in the plane: $r=$ distance from the origin $\theta=$ angle with positive x-axis

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Consider integrals over the region D that is a "polar rectangle:" $a \leq r \leq b$ and $\alpha \leq \theta \leq \beta$.

If f is continuous on the polar rectangle D, then

$$
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Reason:

Example. Compute the area of a disk of radius R.

The double integral over a more general polar region between rays $\theta=\alpha, \theta=\beta$ and polar curves $r=h_{1}(\theta)$ and $r=h_{2}(\theta)$ is given by

$$
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Recall some standard polar curves:
$\left.\begin{array}{l}r=a \cos \theta \\ r=a \sin \theta\end{array}\right\}$ is a circle through origin, tangent to an axis, traversed once for $0 \leq \theta \leq \pi$
$\left.\begin{array}{l}r=a \cos (n \theta) \\ r=a \sin (n \theta)\end{array}\right\}$ is a rose with $\left\{\begin{array}{l}n \text { petals, if } n \text { is odd (traversed once for } 0 \leq \theta \leq \pi) \\ 2 n \text { petals, if } n \text { is even (traversed once for } 0 \leq \theta \leq 2 \pi)\end{array}\right.$
$\left.\begin{array}{l}r=a(1 \pm \cos \theta) \\ r=a(1 \pm \sin \theta)\end{array}\right\}$ is a cardiod, traversed once for $0 \leq \theta \leq 2 \pi$

Example. Find the volume under the cone $z=\sqrt{x^{2}+y^{2}}$ above the rose $r=\sin (2 \theta)$.

Example. Find the integral $\iint_{D} y d A$ if $D=\left\{(x, y) \mid x^{2}+(y-1)^{2} \leq 1\right.$ and $\left.x^{2}+y^{2} \geq 1\right\}$.

Calculus 3 - Lecture notes

12.5 Triple Integrals

The triple integral is defined much like the double integral. Suppose $f(x, y, z)$ is defined on a rectangular box $B=[a, b] \times[c, d] \times[r, s]$. Subdivide
$[a, b]$ into l pieces of width Δx
$[c, d]$ into m pieces of width Δy
$[r, s]$ into n pieces of width Δz

Choose point $\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right)$ in subbox $B_{i j k}$, form the triple Riemann sum

$$
\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V, \text { where } \Delta V=\Delta x \Delta y \Delta z, \text { volume of the } i j k \text {-th subbox }
$$

and consider what happens to the expression when $l, m, n \rightarrow \infty$. If the limit exists, it is called the triple integral of f over the rectangular box B. We define:

$$
\iiint_{B} f(x, y, z) d V=\lim _{l, m, n \rightarrow \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V
$$

Fubini's Theorem. If $f(x, y, z)$ is continuous on the rectangular box $B=[a, b] \times[c, d] \times[r, s]$, then

$$
\iiint_{B} f(x, y, z) d V=\int_{a}^{b} \int_{c}^{d} \int_{r}^{s} f(x, y, z) d z d y d x=\iint_{R} \int_{r}^{s} f(x, y, z) d z d A
$$

where $R=[a, b] \times[c, d]$. Five other orders of integrals are valid, too.

To integrate over a general bounded 3-dimensional region E, enclose it in a box B and define, like before

$$
\iiint_{E} f(x, y, z) d V=\iiint_{B} F(x, y, z) d V
$$

Note. $\iiint_{E} 1 d V=$ volume of E.

Typical regions of integration are:
Type 1 region of integration - between graphs of two functions of x, y over region D in $x y$-plane
$\iiint_{E} f(x, y, z) d V=\iint_{D} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d A$
The inside-most integral by z becomes some function $G(x, y)$, whose integral $\iint_{D} G(x, y) d A$ is resolved in established ways.

Example. Compute $\iiint_{E} x d V$, if E is the region below the plane $2 x+y-z=-1$, above the plane $z=-1$, and inside the cylinder bounded by surfaces $y=x^{2}, x=1$ and $y=0$.

Type 2 region of integration - between graphs of two functions of y, z over region D in $y z$-plane
$\iiint_{E} f(x, y, z) d V=\iint_{D} \int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x d A$

Type 3 region of integration - between graphs of two functions of x, z over region D in $x z$-plane

$$
\iiint_{E} f(x, y, z) d V=\iint_{D} \int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y d A
$$

Example. Find the volume of the solid inside both $y=x^{2}+z^{2}-1$ and $x^{2}+y^{2}+z^{2}=7$.

Example. Express the integral $\iiint_{E} f(x, y, z) d V$ in six different ways, where E is bounded by the surfaces $z=0, z=y$ and $x^{2}=1-y$.

Calculus 3 - Lecture notes
MAT 309, Spring 2022 - D. Ivanšić
12.6-7 Cylindrical and Spherical Coordinates

Cylindrical Coordinates

We obtain cylindrical coordinates (r, θ, z) by putting a polar coordinate system in the $x y$ plane and retaining z.

$$
\begin{array}{ll}
x=r \cos \theta & r=\sqrt{x^{2}+y^{2}} \\
y=r \sin \theta & \tan \theta=\frac{y}{x} \\
z=z & z=z
\end{array}
$$

Example. Convert coordinates.

$$
\left(1, \frac{3 \pi}{4},-3\right) \rightarrow \text { Cartesian } \quad(-5,-3,6) \rightarrow \text { cylindrical }
$$

Example. Sketch the surfaces.

$$
r=r_{0} \quad \theta=\theta_{0} \quad z=z_{0}
$$

Example. Sketch the surface $r^{2}+z^{2}=16$.

Spherical Coordinates

In spherical coordinates $(\rho, \theta, \phi), \rho \geq 0$ is distance from origin, θ has same meaning as in cylindrical coordinates and ϕ is angle from positive z-axis $(0 \leq \phi \leq \pi)$.

$$
\begin{array}{ll}
x=\rho \sin \phi \cos \theta & \rho=\sqrt{x^{2}+y^{2}+z^{2}} \\
y=\rho \sin \phi \sin \theta & \tan \theta=\frac{y}{x} \\
z=\rho \cos \phi & \\
\text { Note that } & \cos \phi=\frac{z}{\rho} \\
r=\rho \sin \phi &
\end{array}
$$

Example. Convert coordinates.
$\left(3, \frac{\pi}{4}, \frac{2 \pi}{3}\right) \rightarrow$ Cartesian $\quad(-\sqrt{3}, 1,2 \sqrt{3}) \rightarrow$ spherical

Example. Sketch the surfaces.

$$
\rho=\rho_{0} \quad \theta=\theta_{0} \quad \phi=\phi_{0}
$$

Example. Sketch the surface $\rho=\sin \phi$.

Triple integrals in cylindrical coordinates. If E is the region between surfaces $z=$ $u_{1}(x, y)$ and $z=u_{2}(x, y)$ whose projection to the $x y$-plane is the polar region $\alpha \leq \theta \leq \beta$, $h_{1}(\theta) \leq r \leq h_{2}(\theta)$, then

$$
\iiint_{E} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r \cos \theta, r \sin \theta)}^{u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

Example. Find the volume cut out of a ball of radius b by a cylinder of radius $a(a<b)$ whose axis contains a diameter of the ball.

Triple integrals in spherical coordinates. If E is the spherical wedge $a \leq \rho \leq b$, $\alpha \leq \theta \leq \beta, c \leq \phi \leq d$, then

$$
\iiint_{E} f(x, y, z) d V=\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
$$

Example. Find $\iiint_{E} z^{2} d V$ if E is the upper half of the ball $x^{2}+y^{2}+z^{2} \leq 4$.

Example. Find the volume inside the cone $z^{2}=3 x^{2}+3 y^{2}$ and the sphere $x^{2}+y^{2}+(z-1)^{2}=1$.

