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11.1 Functions of

Several Variables

Many quantities depend on more than one variable. Consider these quantities, which depend
on two variables.

Example.

1) f(x, y) =
√
x2 + y2, distance from a point with coordinates (x, y) to the origin.

2) A(l, w) = lw, area of a rectangle with length l and width w.

3) h(v, α) =
v2 sin(2α)

g
, range of a projectile launched at angle α and initial velocity v.

In general, a function of two variables f(x, y) is a rule that assigns to each point (x, y) in a
domain D a real number f(x, y).

The range of the function f is the set {f(x, y) | (x, y) ∈ D} (all numbers f(x, y), as (x, y)
goes through the domain D).

Find the domain and range of the following functions.

Example. f(x, y) =
√

x2 + y2

Example. f(x, y) = ln(y − x3)
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Definition. The graph of a function of two variables f(x, y) is the set of all points (x, y, z)
such that z = f(x, y) and (x, y) is in the domain of the function.

Example. Sketch the graph of f(x, y) = 2x+ y − 1.
(Note: a general linear function in two variables is f(x, y) = ax+ by + c).

Example. Sketch the graph of f(x, y) = x2 + 3y2 using traces in planes z = k.

Definition. Level curves of a function of two variables f(x, y) are curves whose equation is
f(x, y) = k, for some real number k.

Note. Level curves are projections to the xy-plane of traces of z = f(x, y) in z = k.
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Example. Isothermals are level curves of the temperature function.

Example. Sketch the level curves of the function g(x, y) = yex.

For functions of 3 variables f(x, y, z), we can also consider domain, range and level surfaces.
Drawing graphs is not possible, because the graph would be in 4-dimensional space, but we
can gain some insight into behavior of the function by studying its level surfaces, surfaces
where f(x, y, z) = k.

Example. Find the domain, range and sketch level surfaces for the function
f(x, y, z) =

√
x2 − y2 − z2.
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Functions of n variables are considered in a similar way.

Example. The average of n numbers is f(x1, x2, . . . , xn) =
1

n
(x1 + x2 + · · ·+ xn).

Depending on context, we may think of a function f(x1, x2, . . . , xn) as:

1) a function of n variables

2) a function of a point variable (x1, x2, . . . , xn)

3) a function of a vector variable ⟨x1, x2, . . . , xn⟩

Example. By extending the notion of dot product to vectors with n components, we can
consider the function

f(x) = c · x, where c = ⟨c1, c2, . . . , cn⟩, x = ⟨x1, x2, . . . , xn⟩.

Thus, f(x) = c1x1 + c2x2 + · · ·+ cnxn, a linear function of n variables.
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Example. The volume of
a cylinder of radius x and
height y is V (x, y) = πx2y.

If we fix y, e.g. y = 3 we get a function only of x, g(x) = V (x, 3) = .

We may find
dg

dx
= , rate of change of V with respect to x, when y is fixed at 3.

If we fix x, e.g. x = 2 we get a function only of y, h(y) = V (2, y) = .

We may find
dh

dy
= , rate of change of V with respect to y, when x is fixed at 2.

For general fixed x or y:

g(x) = πx2y (y fixed),
dg

dx
= , partial derivative of V with respect to x

h(y) = πx2y (x fixed),
dh

dy
= , partial derivative of V with respect to y

More precisely, we have

Definition. Suppose f(x, y) is a function of two variables. We define:

fx(a, b) = lim
h→0

f(a+ h, b)− f(a, b)

h
, the partial derivative of f with respect to x at (a, b)

fy(a, b) = lim
h→0

f(a, b+ h)− f(a, b)

h
, the partial derivative of f with respect to x at (a, b)

In general, if f(x1, x2, . . . , xn) is a function of n variables we define

fxi
(a1, a2, . . . , an) = lim

h→0

f(a1, . . . , ai−1, ai + h, ai+1, . . . , an)− f(a1, a2, . . . , an)

h
,

the partial derivative of f with respect to xi at (a1, a2, . . . , an)

Notation.

fx(x, y) = fx =
∂f

∂x
=

∂

∂x
f(x, y) =

∂z

∂x
= Dxf
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To find a partial derivative by a variable, treat all the other variables as constants and
differentiate in the usual way.

Example. Find the partial derivatives of f by every variable.

f(x, y) = x2 − 3x3y3 + 4x ln y.

f(x, y, z) = exy cos(y2 + z2)
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Graphical interpretation of partial derivatives.

fx(a, b) is the slope of the curve that is the intersection of the plane y = b with the graph
of f(x, y).

fy(a, b) is the slope of the curve that is the intersection of the plane x = a with the graph
of f(x, y).

As we have seen from examples, fx, fy or fz are functions of several variables in their
own right, so we can take their partial derivatives. The notation for these second partial
derivatives is: fxx = (fx)x, fxy = (fx)y, etc.

Example. Find the second partial derivatives of f(x, y) = x2 − 3x3y3 + 4x ln y by every
variable combination.
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Example. For f(x, y, z) = exy cos(y2 + z2), find the second partial derivatives fxx, fxz, fzx,
fxy and fyx. What do you notice?

Clairaut’s theorem. Suppose f is defined on a disk D that contains (a, b). If fxy and fyx
are both continuous on D, then fxy(a, b) = fyx(a, b). That is, we can take higher partial
derivatives of functions in arbitrary order.
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11.4 Tangent Planes and

Linear Approximations

It is intuitively clear that a smooth surface
has a tangent plane. For example, placing
a thin board so it touches a vase mimics
the idea of the tangent plane.

Consider a curve on the surface. At any
point of the curve, the tangent line of the
curve ought to lie in the tangent plane of
the surface at that point.

Now specialize this to:
– the surface z = f(x, y)
– the curves resulting from intersecting the surface with vertical planes x = x0 and y = y0.

The tangent lines to those curves at point (x0, y0) are in the tangent plane to the surface at
(x0, y0) — we use this fact to to get a normal vector of the tangent plane.
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The equation of the tangent plane to graph of function z = f(x, y) at point (x0, y0, z0) is

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

Example. Find the equation of the tangent plane to the sphere z =
√

16− x2 − y2 at point
(2,−3,

√
3).

Note. Suppose z = L(x, y) is the equation of the tangent plane to the surface at point
(x0, y0). Then for (x, y) ≈ (x0, y0) we have L(x, y) ≈ f(x, y).

(x, y) ≈ (x0, y0) means distance between points (x, y) and (x0, y0) is small.

Example. If L(x, y) is the tangent plane of the above example, compute the following and
compare:

L(2.1,−2.9) =

f(2.1,−2.9) =
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Equation of the tangent plane can be rewritten:

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

dz = fx(x0, y0)∆x+ fy(x0, y0)∆y

We introduce the differential dz as a function of two variables dx and dy that represent the
change in x- and y-values as we move away from a point (x0, y0). (Thus, dx = ∆x and
dy = ∆y.)

dz = fx(x0, y0) dx+ fy(x0, y0) dy

dz represents change in value of L(x, y), the tangent plane at (x0, y0, z0)
∆z represents f(x0 + dx, y0 + dy)− (x0, y0), change in value of the function f(x, y)

Since dz ≈ ∆z, dz can be used to approximate the change in value ∆z of the function f(x, y).

Example. The radius x = 30cm and height y = 50cm of a cylinder were measured with
accuracy 0.5cm and 0.2cm, respectively. Use differentials to estimate the maximal error in
measuring the surface area of the cylinder A = 2πx2 + 2πxy. Find the percentage error
estimate as well.
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Recall: if y = y(x) and x = x(t), then y is a function of t via x and

dy

dt
=

dy

dx
· dx
dt

(
=

dy

dx
(x(t)) · dx

dt
(t)

)
Chain rule

Suppose that z = z(x, y), x = x(t), y = y(t). This makes z a function of t via x and y,
z(t) = z(x(t), y(t)), and

dz

dt
=

∂z

∂x
· dx
dt

+
∂z

∂y
· dy
dt(

Really:
dz

dt
=

∂z

∂x
(x(t), y(t)) · dx

dt
(t) +

∂z

∂y
(x(t), y(t)) · dy

dt
(t)

)

Example. Let z = ln(x+ y2), x =
√
2 + t, y = t3. Find

dz

dt
when t = 2.

Suppose that z = z(x, y), x = x(s, t), y = y(s, t). This makes z a function of s and t via x
and y, z(s, t) = z(x(s, t), y(s, t)), and

∂z

∂s
=

∂z

∂x
· ∂x
∂s

+
∂z

∂y
· ∂y
∂s

∂z

∂t
=

∂z

∂x
· ∂x
∂t

+
∂z

∂y
· ∂y
∂t

evaluated at appropriate numbers.
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Example. Let z = x2 sin y, x = s2 + t2, y = 2st. Find
∂z

∂s
and

∂z

∂t
when s =

π

4
, t = 1.

In general, let u = u(x1, . . . xn) — u is a function of n variables
xi = xi(t1, . . . tm) — each of x1, . . . , xn is a function of m variables

This makes u a function of t1, . . . tm via x1, . . . , xn, and

∂u

∂ti
=

∂u

∂x1

· ∂x1

∂ti
+

∂u

∂x2

· ∂x2

∂ti
+ · · ·+ ∂u

∂xn

· ∂xn

∂ti

∂u

∂ti
=

〈
∂u

∂x1

,
∂u

∂x2

, . . . ,
∂u

∂xn

〉
·
〈
∂x1

∂ti
,
∂x2

∂ti
, . . . ,

∂xn

∂ti

〉
The dependence of variables may be visu-
alized using the tree diagram at left.

Then
∂u

∂ti
is the sum of products of partial

derivatives along every path from u to ti.
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Implicit differentiation

Example. If x2 + (y − 1)2 = 4, then y
is implicitly a function of x. It is in form
F (x, y) = k, where F (x, y) = x2+(y−1)2,
k = 4.

Differentiate F (x, y) = k by x:

If y is given implicitly as a function of x via the equation F (x, y) = k, then

dy

dx
= −

∂F

∂x
∂F

∂y

= −Fx

Fy

Compute
dy

dx
for our example and note where the formula is valid.
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Example. If x2 + y2 − z2 = 1, then z is implicitly a function of x and y. This equation is
in form F (x, y, z) = k. Differentiate it by x and y:

If z is given implicitly as a function of x, y via the equation F (x, y, z) = k, then

∂z

∂x
= −

∂F

∂x
∂F

∂z

= −Fx

Fz

∂z

∂y
= −

∂F

∂y
∂F

∂z

= −Fy

Fz

Compute
∂z

∂x
and

∂z

∂y
for our example at x = 3, y = 2 and z > 0 and note where the formula

is valid.
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11.6 Directional Derivative

and the Gradient Vector

Let f(x, y) be a function of two variables. We may view fx and fy as derivatives in direction
of vectors i and j. This idea may be generalized to any unit vector u.

Definition. The directional derivative of f at (x0, y0) in direction of a unit vector u = ⟨a, b⟩
is

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h

If we set g(h) = f(x0+ha, y0+hb), then the directional derivative is the same as g′(0), slope
of tangent line to the curve shown above.

Note. Why does u need to be a unit vector?

The function g(h) captures values of f along the line through (x0, y0) with direction vector u,
parametrized by r(h) = ⟨x0 + ha, y0 + hb⟩. Then g′(h) depends on f and on how fast the
line is traveled, where speed is |u|. We do not want the directional derivative to depend on
the speed the line is traveled, only on its direction, so we set u to be unit in order to get
unit speed.

Theorem. Let f(x, y) be differentiable, and u = ⟨a, b⟩ a unit vector. Then

Duf(x0, y0) = fx(x0, y0) a+ fy(x0, y0) b = ∇f · u,

where ∇f(x0, y0) = fx(x0, y0) i+ fy(x0, y0) j, called the gradient vector.

Proof.
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Example. Find the directional derivative of f(x, y) = x3 + x2y − y2 at point (2, 1) in
direction of vector 3i+ 4j.

We similarly define the directional derivative of a function of three variables f(x, y, z) in
direction of a unit vector u = ⟨a, b, c⟩.

Definition. The directional derivative of f at (x0, y0, z0) in direction of a unit vector
u = ⟨a, b, c⟩ is

Duf(x0, y0, z0) = lim
h→0

f(x0 + ha, y0 + hb, z0 + hc)− f(x0, y0, z0)

h

As before,
Duf(x0, y0, z0) = ∇f(x0, y0, z0) · u,

where ∇f(x0, y0, z0) = fx(x0, y0, z0) i+ fy(x0, y0, z0) j+ fz(x0, y0, z0)k

Theorem. For a differentiable function f of two or three variables, the maximum (minimum)
value of Duf(x) over all possible directions u is |∇f(x)| (respectively, −|∇f(x)|), and it
occurs when u is in the direction of ∇f(x) (respectively, −∇f(x)).

Proof.
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Applications of gradients

Example. A smelly substance has been smeared throughout the upper half-plane with the

function f(x, y) = x2 +
1

y
describing its pungency. If you are standing at point (1, 2), in

which direction should you run to reduce discomfort the fastest?

Suppose F (x, y, z) = k is a level surface for a function F (x, y, z). Let r(t) = ⟨x(t), y(t), z(t)⟩
be any curve on the level surface. Differentiate the equation below to find the relationship
between ∇F (r(t)) and r′(t).

F (x(t), y(t), z(t)) = k

As before, a tangent plane to the surface at a point contains tangent lines to any curve on the
surface going through this point, so the above says that ∇F (x0, y0, z0) is perpendicular to
any tangent line to a curve on the surface through (x0, y0, z0), and is therefore perpendicular
to the tangent plane at (x0, y0, z0).
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The normal vector of the tangent plane to the surface F (x, y, z) = k at (x0, y0, z0) is
∇F (x0, y0, z0), so the tangent plane has equation

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0

Example. Show that the tangent plane to a sphere at a point is always perpendicular to
the radius ending at that point.

The gradient vector points in the direc-
tion of the biggest increase of F , which is
perpendicular to the level surfaces — of
course, because along the level surfaces,
the function is constant. Illustrate for
function F (x, y, z) = x2 + y2 + z.

Example. By considering level curves of the pungency function f(x, y) = x2 +
1

y
, draw

paths of fastest escape from the smelly substance.

Ch.11-19



Calculus 3 — Lecture notes
MAT 309, Spring 2022 — D. Ivanšić

11.7 Maximum and

Minimum Values

Let f(x, y) be a function of two variables. We would like to find local and absolute maxima
and minima.

Definition. f has a
– local maximum at (a, b) if f(a, b) ≥ f(x, y) for all (x, y) in some disk centered at (a, b)
– local minimum at (a, b) if f(a, b) ≤ f(x, y) for all (x, y) in some disk centered at (a, b)

Definition. f has an
– absolute maximum at (a, b) if f(a, b) ≥ f(x, y) for all (x, y) in domain of f
– absolute minimum at (a, b) if f(a, b) ≤ f(x, y) for all (x, y) in domain of f

Suppose f has a local maximum at (a, b):
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Theorem. If f has a local maximum or minimum at (a, b) and both fx(a, b) and fy(a, b)
exist, then

fx(a, b) = 0 fy(a, b) = 0, that is, ∇f(a, b) = 0.

Note. Just knowing that fx(a, b) = 0 and fy(a, b) = 0 does not mean that f has a local
maximum or minimum at (a, b). Consider f(x, y) = y2 − x2 at (0, 0).

Definition. A point (a, b) is called a critical point of f if fx(a, b) = 0 and fy(a, b) = 0, or if
one of the derivatives does not exist.

From theorem above we know that f will have local maxima and minima at critical points.
Once we find the critical points, how to determine what is the behavior at the critical point:
local maximum, minimum or saddle point?

Predictably, second derivatives are involved, and we define the expression

D(x, y) =

∣∣∣∣ fxx fxy
fyx fyy

∣∣∣∣ = fxxfyy − f 2
xy

Theorem (Second Derivatives Test). Suppose (a, b) is a critical point of f , and second
derivatives exist and are continuous on a disk around (a, b).
a) If D(a, b) > 0 and fxx(a, b) > 0, then f has a local minimum at (a, b).
b) If D(a, b) > 0 and fxx(a, b) < 0, then f has a local maximum at (a, b).
c) If D(a, b) < 0 and fxx(a, b) < 0, then f has a saddle point at (a, b).

If D(a, b) = 0, the test is inconclusive and other means have to be found.
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Example. Find all the local extremes of f(x, y) = 2x3 + xy2 + 5x2 + y2.
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Definition. A set in R2 or R3 is closed if it contains all its boundary points.

Definition. A set in R2 or R3 is bounded if it is contained in some disk (R2) or ball (R3).

Theorem. If f is continuous on a closed and bounded set D in R2 (or R3), then f attains
both its absolute minimum and absolute maximum value at some points on D.

To find the absolute minimum and maximum values (and where they occur):
1) Find critical points of f .
2) Parametrize boundary and use it to find critical points of the composite of the function
and parametrization.
3) Compare values at all the critical points found.
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Example. Find absolute extremes of the function f(x, y) = 2x2 − x + y2 − 2 on the set
D = {(x, y) | x2 + y2 ≤ 1, x ≥ 0}.
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