1. (4pts) By inspection, explain why the following sets of vectors cannot be bases for \mathbf{R}^{2} and \mathbf{R}^{3}, respectively.
a) $\mathbf{v}_{1}=(1,1), \mathbf{v}_{2}=(-1,2), \mathbf{v}_{3}=(0,1)$
b) $\mathbf{v}_{1}=(1,2,0), \mathbf{v}_{2}=(0,2,1), \mathbf{v}_{3}=(1,0,-1)$
2. (5pts) Use matrix multiplication to find the matrix of the linear operator that is the composition of a rotation by 45° around the x axis, followed by a projection to the $x y$-plane.
3. (4pts) Find the standard matrix of the linear operator given by the equations below and determine whether it is a) one-to-one, or b) onto.

$$
\begin{aligned}
& w_{1}=5 x_{1}-3 x_{2} \\
& w_{2}=-x_{1}+\frac{3}{5} x_{2}
\end{aligned}
$$

4. (9pts) A matrix A is given below.
a) Find a basis for the row space of A.
b) Find a basis for the nullspace of A.
c) Verify that $\operatorname{row}(A)=\operatorname{null}(A)^{\perp}$ by showing that every basis vector for $\operatorname{row}(A)$ is orthogonal to every basis vector for null(A).
$A=\left[\begin{array}{cccc}1 & 3 & -2 & 0 \\ 2 & 6 & -5 & -2 \\ 0 & 0 & 5 & 10\end{array}\right]$
5. (5pts) Let W be the subspace of \mathbf{R}^{3} spanned by vectors $(2,1,4)$ and $(1,-1,0)$. Find a basis for W^{\perp}.
6. (6 pts) Let A be a 3×7 matrix. Answer the following and justify your answers.
a) What is the biggest $\operatorname{rank}(A)$ could be?
b) What is the smallest nullity (A) could be?
c) Give an example of a 3×7 matrix whose nullity is 5 .
7. (4pts) Are the following vectors a basis for the subspace of \mathbf{R}^{5} that they span?
$\mathbf{v}_{1}=(*, *, *, *, 1), \mathbf{v}_{2}=(*, *, *, 1,0), \mathbf{v}_{3}=(*, *, 1,0,0)$
8. (4pts) Complete the vector $(0,-1,1)$ to a basis of \mathbf{R}^{3}. (That is, find additional vectors with which $(0,-1,1)$ makes a basis.)
9. (9pts) Are the following statements true or false? Justify your answer by giving a logical argument or a counterexample.
a) If E is an elementary matrix, then A and $E A$ have the same row space.
b) If A is a nonzero $m \times n$ matrix, then $\operatorname{nullity}(A) \leq n-1$.
c) For every 2×2 matrix A, $\operatorname{row}\left(A^{T}\right)=\operatorname{row}(A)^{\perp}$.

Bonus. (5pts) Let $\mathbf{v}_{1}=(0,3,-6,5), \mathbf{v}_{2}=(0,1,-2,3)$. Write a linear system whose solution space is $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

