Matrix Theory — Exam 1 Name: S%ﬁ GC‘M'"

MAT 335, Fall 2022 — D. Ivansié Show all your work!
1. (12pts) For the matrices A, B and C find the following expressions, if they are defined:
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2. (8pts) The augmented matrix below is in reduced row echelon form.

a) Write the solution of the system represented by the matrix.
b) Write the solution in vector form.
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3. (8pts) Write the rotation matrix for a counterclockwise rotation around the origin by
angle %" and use it find where the point (2, 1) lands after it is rotated.
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4. (14pts) A system of linear equations is given below.
a) Use the Gaussian elimination to solve the system.
b) Write the solution in vector form.
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5. (10pts) Below is the input-output matrix for an economy producing food, transportation

and tourism.

a) What net p ction corresponds to a gross production of $30M of food, $50M of trans-

portation and $¥M of tourism?

b) Set up the system (write its augmented matrix) to find the gross production needed to
satisfy exactly demand of $35M of food, $20M of transportation and $50M of tourism. Do

NOT solve the system, or you will suffer.
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6. (12pts) Below is the augmented matrix of a system of linear equations. Determine

the coefficients @ and b for which the system has:

a) one solution, b) infinitely many

solutions, c¢) no solutions. (Note: no row operations are needed.)
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7. (6pts) Find the elementary matrix E so that EA = B.
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8. (12pts) Consider the vectors g ; "-; 3 _;
1 1 -3
a) Do they span R*7
b) Are they linearly independent?
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9. (18pts) Are the following statements true or false? Justify your answer by giving a
logical argument or a counterexample.

a) If a and b are in Span{u, v}, then a —3b is in Span{u, v}.

b) If A is a 3 x 3 matrix with rank 2, then the columns of A are linearly dependent.

c) If 2 x 2 matrices A and B are invertible, then A + B is invertible.
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Bonus. (10pts) Show: if vectors u and v are linearly independent, then vectors u+ v and
u —v are linearly independent.
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