Matrix Theory - Lecture notes
MAT 335, Fall 2022 - D. Ivanšić

6.1 The Geometry
 of Vectors

Definition. For a vector \mathbf{v} in \mathbf{R}^{n}, the norm (length) $|\mathbf{v}|$ of a vector is defined as

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

A unit vector is a vector whose norm is 1 . The distance between to vectors is defined as $|\mathbf{u}-\mathbf{v}|$.

Example. Determine the condition on coordinates of vectors \mathbf{u} and \mathbf{v} that detects when \mathbf{u} and \mathbf{v} satisfy the Pythagorean-theorem-style equation $|\mathbf{u}|^{2}+|\mathbf{v}|^{2}=|\mathbf{u}-\mathbf{v}|^{2}$.

Definition. The dot product of vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^{n} is the scalar

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

We will say that \mathbf{u} and \mathbf{v} are orthogonal (perpendicular) if $\mathbf{u} \cdot \mathbf{v}=0$.

Note. Viewing vectors \mathbf{u} and \mathbf{v} as column matrices, we have $\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}$. For an $m \times n$ matrix A and vectors $\mathbf{u} \in \mathbf{R}^{n}$ and $\mathbf{v} \in \mathbf{R}^{m}$, we have $A \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot A^{T} \mathbf{v}$.

Theorem 6.1. Properties of the dot product. For all vectors \mathbf{u}, \mathbf{v} and \mathbf{w} in \mathbf{R}^{n} and every scalar c, we have:

$$
\begin{array}{lll}
\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2} & \mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u} & \mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w} \\
\mathbf{u} \cdot \mathbf{u}=0 \text { iff } \mathbf{u}=\mathbf{0} & (c \mathbf{a}) \cdot \mathbf{b}=c(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(c \mathbf{b}) & (\mathbf{v}+\mathbf{w}) \cdot \mathbf{u}=\mathbf{v} \cdot \mathbf{u}+\mathbf{w} \cdot \mathbf{u} \\
|c \mathbf{u}|=|c||\mathbf{u}| & \mathbf{a} \cdot \mathbf{0}=\mathbf{0} \cdot \mathbf{a}=0 &
\end{array}
$$

Proof. As the dot product can be viewed as matrix multiplication, most of the statements have been proven in that setting.

Example. Find a unit vector in the direction of $\mathbf{v}=\left[\begin{array}{r}-1 \\ 3 \\ 4\end{array}\right]$.

Example. Expand.
$|\mathbf{u}-\mathbf{v}|^{2}=$
$|\mathbf{u}+\mathbf{v}|^{2}=$

Theorem 6.2. Pythagorean Theorem in \mathbf{R}^{n}. Vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^{n} are orthogonal if and only if

$$
|\mathbf{u}+\mathbf{v}|^{2}=|\mathbf{u}|^{2}+|\mathbf{v}|^{2}
$$

Proof.

Example. The orthogonal projection of a vector \mathbf{u} onto vector \mathbf{v} is given by $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}} \mathbf{v}$.

Theorem 6.3. Cauchy-Schwarz Inequality. For all vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^{n}, we have

$$
|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}| \cdot|\mathbf{v}|
$$

Proof.

Theorem 6.3. Triangle Inequality. For all vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^{n}, we have

$$
|\mathbf{u}+\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}|
$$

Matrix Theory - Lecture notes
MAT 335, Fall 2022 - D. Ivanšić

6.2 Orthogonal Vectors

Definition. A set of vectors in \mathbf{R}^{n} is called orthogonal if any two distinct vectors from the set are orthogonal. A set of vectors in \mathbf{R}^{n} is called orthonormal if the set is orthogonal and every vector in the set is a unit vector.

Example. Show that the set is orthogonal.

$$
\left\{\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{r}
-2 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\right\}
$$

Theorem 6.5. An orthogonal set of nonzero vectors is linearly independent.

Definition. An orthogonal or orthonormal set that is a basis is called an orthogonal or orthonormal basis.

Example. The subset of \mathbf{R}^{3} above is an orthogonal basis for \mathbf{R}^{3}. Write the vector below as a linear combination of those basis vectors.
$\left[\begin{array}{r}1 \\ -3 \\ 4\end{array}\right]$

Proposition Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be an orthogonal basis for V, and \mathbf{u} a vector in V. Then $\mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}_{\mathbf{1}}}{\left|\mathbf{v}_{1}\right|^{2}} \mathbf{v}_{1}+\cdots+\frac{\mathbf{u} \cdot \mathbf{v}_{\mathbf{k}}}{\left|\mathbf{v}_{k}\right|^{2}} \mathbf{v}_{k}, \quad \begin{aligned} & \text { or, if basis is } \\ & \text { orthonormal: }\end{aligned} \quad \mathbf{u}=\left(\mathbf{u} \cdot \mathbf{v}_{\mathbf{1}}\right) \mathbf{v}_{1}+\cdots+\left(\mathbf{u} \cdot \mathbf{v}_{\mathbf{k}}\right) \mathbf{v}_{k}$

Every subspace of \mathbf{R}^{n} has an orthogonal and hence an orthonormal basis.
Theorem 6.6. The Gram-Schmidt process. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a basis for the subspace W of \mathbf{R}^{n}. Define the vectors:

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{u}_{1}, \quad \mathbf{v}_{2}=\mathbf{u}_{2}-\frac{\mathbf{u}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{1}}}{\left|\mathbf{v}_{1}\right|^{2}} \mathbf{v}_{1}, \quad \mathbf{v}_{3}=\mathbf{u}_{3}-\frac{\mathbf{u}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{1}}}{\left|\mathbf{v}_{1}\right|^{2}} \mathbf{v}_{1}-\frac{\mathbf{u}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{2}}}{\left|\mathbf{v}_{\mathbf{2}}\right|^{2}} \mathbf{v}_{2}, \ldots, \\
& \mathbf{v}_{k}=\mathbf{u}_{k}-\frac{\mathbf{u}_{\mathbf{k}} \cdot \mathbf{v}_{\mathbf{1}}}{\left|\mathbf{v}_{1}\right|^{2}} \mathbf{v}_{1}-\frac{\mathbf{u}_{\mathbf{k}} \cdot \mathbf{v}_{\mathbf{2}}}{\left|\mathbf{v}_{2}\right|^{2}} \mathbf{v}_{2}-\cdots-\frac{\mathbf{u}_{\mathbf{k}} \cdot \mathbf{v}_{\mathbf{k}-\mathbf{1}}}{\left|\mathbf{v}_{k-1}\right|^{2}} \mathbf{v}_{k-1}
\end{aligned}
$$

Then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is an orthogonal basis for W, and furthermore, for every i

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{i}\right\}=\operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{i}\right\}
$$

Main idea of the construction.

Matrix Theory - Lecture notes
 MAT 335, Fall 2022 - D. Ivanšić

6.3 Orthogonal Projections

Definition. The orthogonal complement \mathcal{S}^{\perp} of a nonempty subset \mathcal{S} of \mathbf{R}^{n} is the set of all vectors in \mathbf{R}^{n} that are orthogonal to every vector in \mathcal{S}.

$$
\mathcal{S}^{\perp}=\left\{\mathbf{v} \in \mathbf{R}^{n} \mid \mathbf{v} \cdot \mathbf{u}=0 \text { for every } \mathbf{u} \in \mathcal{S}\right\}
$$

Example. What is \mathcal{S}^{\perp} if \mathcal{S} is one of the sets below in \mathbf{R}^{3} ?
$\mathcal{S}_{1}=\{\mathbf{u}\}$
$\mathcal{S}_{2}=\{\mathbf{u}, \mathbf{v}\}$
$\mathcal{S}_{3}=$ a line in \mathbf{R}^{3}
$\mathcal{S}_{4}=$ a plane in \mathbf{R}^{3}

Proposition. The orthogonal complement of any nonzero subset of \mathbf{R}^{n} is a subspace or \mathbf{R}^{n}.

Proposition. For any nonempty set $\mathcal{S}, \mathcal{S}^{\perp}=(\operatorname{Span} S)^{\perp}$. In particular the orthogonal complement of a basis of a subspace is the same as the orthogonal complement of the subspace.

Example. Find the orthogonal complement of the subspace of \mathbf{R}^{4} that is generated by

$$
\left\{\left[\begin{array}{r}
1 \\
3 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{r}
2 \\
0 \\
1 \\
-3
\end{array}\right],\left[\begin{array}{r}
0 \\
6 \\
-3 \\
7
\end{array}\right]\right\}
$$

Proposition. For an $m \times n$ matrix $A,(\operatorname{Row} A)^{\perp}=\operatorname{Null} A$ and $(\operatorname{Col} A)^{\perp}=\operatorname{Null} A^{T}$.

Theorem 6.7. Orthogonal Decomposition Theorem. Let W be a subspace of \mathbf{R}^{n}. Then, for every vector \mathbf{u} in \mathbf{R}^{n}, there exist unique vectors $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$ such that $\mathbf{u}=\mathbf{w}+\mathbf{z}$. Furthermore, if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is an orthonormal basis for W, then

$$
\mathbf{w}=\left(\mathbf{u} \cdot \mathbf{v}_{\mathbf{1}}\right) \mathbf{v}_{1}+\cdots+\left(\mathbf{u} \cdot \mathbf{v}_{\mathbf{k}}\right) \mathbf{v}_{k}
$$

Proof.

Proposition. For any subspace W of $\mathbf{R}^{n}, \operatorname{dim} W+\operatorname{dim} W^{\perp}=n$.

Definition. Let W be a subspace of \mathbf{R}^{n} and let \mathbf{u} be a vector. The orthogonal projection of \mathbf{u} onto W is the unique vector \mathbf{w} such that $\mathbf{u}-\mathbf{w}$ is in W^{\perp}. The function $U_{W}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ that sends every vector \mathbf{u} to its orthogonal projection on W is linear and is called the orthogonal projection operator.

We show U_{W} is linear.

We would like to get the standard matrix P_{W} of U_{W}.
Proposition. Let C be an $n \times k$ matrix whose columns are linearly independent. Then $C^{T} C$ is an invertible $k \times k$ matrix.

Theorem 6.8. Let C be an $n \times k$ matrix whose columns are a basis for a subspace W of \mathbf{R}^{n}. Then the standard matrix of the orthogonal projection to W is

$$
P_{W}=C\left(C^{T} C\right)^{-1} C^{T}
$$

Proof.

Example. Find the standard matrix of the orthogonal projection in \mathbf{R}^{3} to:
line spanned by $\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]$
plane spanned by $\left[\begin{array}{r}2 \\ 0 \\ -1\end{array}\right]$ and $\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]$

Proposition (Closest Vector Property). Let W be a subspace of \mathbf{R}^{n} and \mathbf{u} a vector in \mathbf{R}^{n}. Among all vectors in W, the orthogonal projection of \mathbf{u} onto W is the closest to \mathbf{u}.

