$\frac{6.1 \text{ The Geometry}}{\text{of Vectors}}$

Definition. For a vector \mathbf{v} in \mathbf{R}^n , the norm (length) $|\mathbf{v}|$ of a vector is defined as

$$|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

A *unit* vector is a vector whose norm is 1. The *distance* between to vectors is defined as $|\mathbf{u} - \mathbf{v}|$.

Example. Determine the condition on coordinates of vectors \mathbf{u} and \mathbf{v} that detects when \mathbf{u} and \mathbf{v} satisfy the Pythagorean-theorem-style equation $|\mathbf{u}|^2 + |\mathbf{v}|^2 = |\mathbf{u} - \mathbf{v}|^2$.

Definition. The *dot product* of vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^n is the scalar

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

We will say that \mathbf{u} and \mathbf{v} are orthogonal (perpendicular) if $\mathbf{u} \cdot \mathbf{v} = 0$.

Note. Viewing vectors \mathbf{u} and \mathbf{v} as column matrices, we have $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$. For an $m \times n$ matrix A and vectors $\mathbf{u} \in \mathbf{R}^n$ and $\mathbf{v} \in \mathbf{R}^m$, we have $A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A^T \mathbf{v}$.

Theorem 6.1. Properties of the dot product. For all vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in \mathbf{R}^n and every scalar c, we have:

 $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2 \qquad \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u} \qquad \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ $\mathbf{u} \cdot \mathbf{u} = 0 \text{ iff } \mathbf{u} = \mathbf{0} \qquad (c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b}) \qquad (\mathbf{v} + \mathbf{w}) \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{u} + \mathbf{w} \cdot \mathbf{u}$ $|c\mathbf{u}| = |c||\mathbf{u}| \qquad \mathbf{a} \cdot \mathbf{0} = \mathbf{0} \cdot \mathbf{a} = 0$

Proof. As the dot product can be viewed as matrix multiplication, most of the statements have been proven in that setting.

Example. Find a unit vector in the direction of $\mathbf{v} = \begin{bmatrix} -1 \\ 3 \\ 4 \end{bmatrix}$.

Example. Expand.

 $|\mathbf{u} - \mathbf{v}|^2 =$

 $|\mathbf{u} + \mathbf{v}|^2 =$

Theorem 6.2. Pythagorean Theorem in \mathbb{R}^n. Vectors **u** and **v** in \mathbb{R}^n are orthogonal if and only if

$$|{\bf u} + {\bf v}|^2 = |{\bf u}|^2 + |{\bf v}|^2$$

Proof.

Example. The orthogonal projection of a vector **u** onto vector **v** is given by $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v}$.

Theorem 6.3. Cauchy-Schwarz Inequality. For all vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^n , we have

 $|\mathbf{u}\cdot\mathbf{v}|\leq |\mathbf{u}|\cdot|\mathbf{v}|$

Proof.

Theorem 6.3. Triangle Inequality. For all vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^n , we have

 $|\mathbf{u} + \mathbf{v}| \le |\mathbf{u}| + |\mathbf{v}|$

Matrix Theory — Lecture notes MAT 335, Fall 2022 — D. Ivanšić

6.2 Orthogonal Vectors

Definition. A set of vectors in \mathbb{R}^n is called *orthogonal* if any two distinct vectors from the set are orthogonal. A set of vectors in \mathbb{R}^n is called *orthonormal* if the set is orthogonal and every vector in the set is a unit vector.

Example. Show that the set is orthogonal.

$\left(\right)$	2		$\begin{bmatrix} -2 \end{bmatrix}$		$\begin{bmatrix} 1 \end{bmatrix}$)
{	3	,	1	,	0	}
l	-1				2	J

Theorem 6.5. An orthogonal set of nonzero vectors is linearly independent.

Definition. An orthogonal or orthonormal set that is a basis is called an *orthogonal* or *orthonormal basis*.

Example. The subset of \mathbb{R}^3 above is an orthogonal basis for \mathbb{R}^3 . Write the vector below as a linear combination of those basis vectors.

 $\left[\begin{array}{c}1\\-3\\4\end{array}\right]$

Proposition Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ be an orthogonal basis for V, and **u** a vector in V. Then

$$\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}_1}{|\mathbf{v}_1|^2} \mathbf{v}_1 + \dots + \frac{\mathbf{u} \cdot \mathbf{v}_k}{|\mathbf{v}_k|^2} \mathbf{v}_k, \quad \text{or, if basis is} \quad \mathbf{u} = (\mathbf{u} \cdot \mathbf{v}_1) \mathbf{v}_1 + \dots + (\mathbf{u} \cdot \mathbf{v}_k) \mathbf{v}_k$$
orthonormal:

Every subspace of \mathbf{R}^n has an orthogonal and hence an orthonormal basis.

Theorem 6.6. The Gram-Schmidt process. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be a basis for the subspace W of \mathbf{R}^n . Define the vectors:

$$\mathbf{v}_1 = \mathbf{u}_1, \quad \mathbf{v}_2 = \mathbf{u}_2 - \frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{|\mathbf{v}_1|^2} \mathbf{v}_1, \quad \mathbf{v}_3 = \mathbf{u}_3 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_1}{|\mathbf{v}_1|^2} \mathbf{v}_1 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_2}{|\mathbf{v}_2|^2} \mathbf{v}_2, \dots,$$
$$\mathbf{v}_k = \mathbf{u}_k - \frac{\mathbf{u}_k \cdot \mathbf{v}_1}{|\mathbf{v}_1|^2} \mathbf{v}_1 - \frac{\mathbf{u}_k \cdot \mathbf{v}_2}{|\mathbf{v}_2|^2} \mathbf{v}_2 - \dots - \frac{\mathbf{u}_k \cdot \mathbf{v}_{k-1}}{|\mathbf{v}_{k-1}|^2} \mathbf{v}_{k-1}$$

Then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is an orthogonal basis for W, and furthermore, for every i

$$\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_i\}=\operatorname{Span}\{\mathbf{u}_1,\ldots,\mathbf{u}_i\}.$$

Main idea of the construction.

Matrix Theory — Lecture notes MAT 335, Fall 2022 — D. Ivanšić

6.3 Orthogonal Projections

Definition. The orthogonal complement S^{\perp} of a nonempty subset S of \mathbf{R}^{n} is the set of all vectors in \mathbf{R}^{n} that are orthogonal to every vector in S.

$$\mathcal{S}^{\perp} = \{ \mathbf{v} \in \mathbf{R}^n \mid \mathbf{v} \cdot \mathbf{u} = 0 \text{for every } \mathbf{u} \in \mathcal{S} \}$$

Example. What is \mathcal{S}^{\perp} if \mathcal{S} is one of the sets below in \mathbb{R}^3 ?

 $egin{aligned} \mathcal{S}_1 &= \{\mathbf{u}\} \ \mathcal{S}_2 &= \{\mathbf{u},\mathbf{v}\} \ \mathcal{S}_3 &= ext{a line in } \mathbf{R}^3 \ \mathcal{S}_4 &= ext{a plane in } \mathbf{R}^3 \end{aligned}$

Proposition. The orthogonal complement of any nonzero subset of \mathbf{R}^n is a subspace or \mathbf{R}^n .

Proposition. For any nonempty set S, $S^{\perp} = (\text{Span } S)^{\perp}$. In particular the orthogonal complement of a basis of a subspace is the same as the orthogonal complement of the subspace.

Example. Find the orthogonal complement of the subspace of \mathbf{R}^4 that is generated by

ſ			$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$			
$\left\{ \right.$	-1	,	$\begin{array}{c} 0 \\ 1 \end{array}$,	-3	ł
l	2		-3		7	J

Proposition. For an $m \times n$ matrix A, $(\operatorname{Row} A)^{\perp} = \operatorname{Null} A$ and $(\operatorname{Col} A)^{\perp} = \operatorname{Null} A^T$.

Theorem 6.7. Orthogonal Decomposition Theorem. Let W be a subspace of \mathbb{R}^n . Then, for every vector \mathbf{u} in \mathbb{R}^n , there exist unique vectors $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$ such that $\mathbf{u} = \mathbf{w} + \mathbf{z}$. Furthermore, if $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is an orthonormal basis for W, then

$$\mathbf{w} = (\mathbf{u} \cdot \mathbf{v_1})\mathbf{v}_1 + \dots + (\mathbf{u} \cdot \mathbf{v_k})\mathbf{v}_k$$

Proof.

Proposition. For any subspace W of \mathbb{R}^n , dim $W + \dim W^{\perp} = n$.

Definition. Let W be a subspace of \mathbb{R}^n and let \mathbf{u} be a vector. The orthogonal projection of \mathbf{u} onto W is the unique vector \mathbf{w} such that $\mathbf{u}-\mathbf{w}$ is in W^{\perp} . The function $U_W : \mathbb{R}^n \to \mathbb{R}^n$ that sends every vector \mathbf{u} to its orthogonal projection on W is linear and is called the orthogonal projection operator.

We show U_W is linear.

We would like to get the standard matrix P_W of U_W .

Proposition. Let C be an $n \times k$ matrix whose columns are linearly independent. Then $C^T C$ is an invertible $k \times k$ matrix.

Theorem 6.8. Let C be an $n \times k$ matrix whose columns are a basis for a subspace W of \mathbb{R}^n . Then the standard matrix of the orthogonal projection to W is

$$P_W = C(C^T C)^{-1} C^T$$

Proof.

Example. Find the standard matrix of the orthogonal projection in \mathbf{R}^3 to:

line spanned by $\begin{bmatrix} 2\\ 3\\ -1 \end{bmatrix}$

plane spanned by
$$\begin{bmatrix} 2\\0\\-1 \end{bmatrix}$$
 and $\begin{bmatrix} -1\\2\\1 \end{bmatrix}$

Proposition (Closest Vector Property). Let W be a subspace of \mathbb{R}^n and \mathbf{u} a vector in \mathbb{R}^n . Among all vectors in W, the orthogonal projection of \mathbf{u} onto W is the closest to \mathbf{u} .