Matrix Theory - Lecture notes
 MAT 335, Fall 2022 - D. Ivanšić

4.1 Subspaces

Definition. A nonempty set W of vectors in \mathbf{R}^{n} is called a subspace of \mathbf{R}^{n} if it has these two properties:

1. If \mathbf{u} and \mathbf{v} are in W, then $\mathbf{u}+\mathbf{v}$ is in W. (We say W is closed under vector addition.)
2. If \mathbf{u} is in W, then $c \mathbf{u}$ is in W for any scalar c. (We say W is closed under scalar multiplication.)

Proposition. If W is a subspace of \mathbf{R}^{n}, then $\mathbf{0}$ is in W.
Proof.

Example. Are the following sets subspaces of \mathbf{R}^{3} ?
$W_{1}=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbf{R}^{3} \right\rvert\, 2 x_{1}+x_{2}-4 x_{3}=1\right\} \quad W_{2}=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbf{R}^{3} \right\rvert\, 2 x_{1}+x_{2}-4 x_{3}=0\right\}$

Example. The one-element set $\{0\}$ is a subspace of \mathbf{R}^{n}. The set \mathbf{R}^{n} is a subspace of \mathbf{R}^{n}.

Example. Let W be the set of all vectors in \mathbf{R}^{2} whose both components are integers. Is W a subspace of \mathbf{R}^{2} ?

Example (Theorem 4.1). If \mathcal{S} is any nonempty subset or \mathbf{R}^{n}, then $\operatorname{Span} \mathcal{S}$ is a subspace of \mathbf{R}^{n}. With this in mind, draw some subspaces of \mathbf{R}^{3}.

Definition (subspaces associated with a matrix). Let A be an $m \times n$ matrix.

- The null space of A is the solution set of $A \mathbf{x}=\mathbf{0}$, denoted by Null A.
- The column space of A is the span of the columns of A, denoted by $\operatorname{Col} A$.
- The row space of A is the span of the rows of A, denoted by Row A.

Theorem 4.2. Let A be an $m \times n$ matrix.

- The null space of A is a subspace of \mathbf{R}^{n}.
- The column space of A is a subspace of \mathbf{R}^{m}.
- The row space of A is a subspace of \mathbf{R}^{n}.

Proof.

Example. Write the generating sets for the null space, the column space and row space for the matrix below.

$$
A=\left[\begin{array}{rrrrr}
1 & -4 & 7 & 1 & 3 \\
3 & -10 & 27 & 2 & -1 \\
1 & -3 & 10 & -1 & 5 \\
2 & -8 & 14 & 4 & -3
\end{array}\right]
$$

Subspaces associated with a linear transformation. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with standard matrix A. Recall that the null space of T is all vectors x so that $T(\mathbf{x})=\mathbf{0}$.

- The null space of T is the same as the null space of A, so it is a subspace of \mathbf{R}^{n}.
- The range of T is the column space of A, so it is a subspace of \mathbf{R}^{m}.

Matrix Theory - Lecture notes
 MAT 335, Fall 2022 - D. Ivanšić

4.2 Basis and Dimension

Definition. Let V be a nonzero subspace of \mathbf{R}^{n}. A basis for V is a linearly independent generating set.

Example.

$\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is a basis for $\mathbf{R}^{n} \quad$ Any two nonparallel vectors in \mathbf{R}^{2} are a basis for \mathbf{R}^{2}

Recall these theorems:
Theorem 1.7. $\operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right\}=\operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ if and only if \mathbf{v} is in $\operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$.
Theorem 1.9. $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is linearly dependent if and only if $\mathbf{u}_{1}=\mathbf{0}$ or there is an $i \geq 2$ such that \mathbf{u}_{i} is a linear combination of its predecessors.

Theorem 4.3 (Reduction Theorem). If \mathcal{S} is a finite generating set for a nonzero subspace V or \mathbf{R}^{n}, then \mathcal{S} can be reduced to a basis for V by removing vectors from \mathcal{S}.

Proof.

Example. Reduce the following generating set to a basis: $\left\{\left[\begin{array}{l}1 \\ 0 \\ 4\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{r}2 \\ -1 \\ 11\end{array}\right]\right\}$

Theorem 4.4 (Extension Theorem). Let \mathcal{S} be a linearly independent subset of a nonzero subspace V of \mathbf{R}^{n}. Then \mathcal{S} can be extended to a basis for V by including additional vectors from V in \mathcal{S}. In particular, every nonzero subspace has a basis, which means every subspace is a span of finitely many vectors.

Proof.

Theorem 4.5. Let V be a subspace of \mathbf{R}^{n}. Then any two bases for V contain the same number of elements.

Proof.

Definition. The number of vectors in a basis for a nonzero subspace V or \mathbf{R}^{n} is called the dimension of V, denoted $\operatorname{dim} V$. We define the dimension of the zero subspace to be 0 .

Example. Is $\left\{\left[\begin{array}{r}2 \\ -1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 7 \\ 4\end{array}\right],\left[\begin{array}{r}-5 \\ 4 \\ 3 \\ 0\end{array}\right]\right\}$ a basis for \mathbf{R}^{4} ?

Theorem 4.6. Let V be a k-dimensional subspace of \mathbf{R}^{n}. Then

- Every linearly independent set of V contains at most k vectors.
- Every subset with more than k vectors is linearly independent.

Proof.

Theorem 4.7. Let V be a k-dimensional subspace of \mathbf{R}^{n}, and \mathcal{S} a set with k vectors. Then - If \mathcal{S} is linearly independent, it is a basis for V.

- If \mathcal{S} is a generating set for V, it is a basis for V.

Proof.

Example. Find a basis for the null space and column space of the matrix below.
$A=\left[\begin{array}{rrrr}-3 & -6 & 3 & -2 \\ -2 & -5 & 3 & 5 \\ 4 & 9 & -5 & 6\end{array}\right]$

Example.

Is $\left\{\left[\begin{array}{r}3 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ 21 \\ -17\end{array}\right]\right\}$ a basis for the subspace generated by $\left\{\left[\begin{array}{r}1 \\ 3 \\ -2\end{array}\right],\left[\begin{array}{r}1 \\ 9 \\ -7\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]\right\}$?

Summary. To show a set \mathcal{B} is a basis for a subspace V of \mathbf{R}^{n} :

1. Show \mathcal{B} is contained in V.
2. Show \mathcal{B} is linearly independent or that it generates V.
3. Compute $\operatorname{dim} V$ and check it equal the number of vectors in \mathcal{B}.

| Matrix Theory - Lecture notes |
| :--- | :--- |
| MAT 335, Fall 2022 - D. Ivanšić |\quad| 4.3 Dimensions of Subspaces |
| :--- |
| Associated with a Matrix |

Matrix Theory - Lecture notes
MAT 335, Fall 2022 - D. Ivanšić

4.3 Dimensions of Subspaces Associated with a Matrix

Proposition. Let A be and $m \times n$ matrix. The following are dimensions of subspaces associated with the matrix A.

Subspace	Notation	Subspace of	Dimension
column space of A	$\operatorname{Col} A$	\mathbf{R}^{m}	$\operatorname{rank} A$
null space of A	Null A	\mathbf{R}^{n}	$\operatorname{nullity} A=n-\operatorname{rank} A$
row space of A	Row A	\mathbf{R}^{n}	$\operatorname{rank} A$

Proof.

Theorem 4.8. The nonzero rows in the reduced row echelon form of a matrix are the basis of the row space of the matrix.

Proof. We show that Row $A=$ Row R.

Note. $\operatorname{rank} A=\operatorname{rank} A^{T}$

Theorem 4.9. If V and W are subspaces of \mathbf{R}^{n} and V is contained in W, then $\operatorname{dim} V \leq \operatorname{dim} W$. If, additionally, $\operatorname{dim} V=\operatorname{dim} W$, then $V=W$.

