4.1 Subspaces

Definition. A nonempty set W of vectors in \mathbb{R}^n is called a *subspace* of \mathbb{R}^n if it has these two properties:

- 1. If **u** and **v** are in W, then $\mathbf{u} + \mathbf{v}$ is in W. (We say W is closed under vector addition.)
- 2. If **u** is in W, then c**u** is in W for any scalar c. (We say W is closed under scalar multiplication.)

Proposition. If W is a subspace of \mathbb{R}^n , then **0** is in W.

Proof.

Example. Are the following sets subspaces of \mathbf{R}^3 ?

$$W_{1} = \left\{ \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \in \mathbf{R}^{3} \mid 2x_{1} + x_{2} - 4x_{3} = 1 \right\} \quad W_{2} = \left\{ \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \in \mathbf{R}^{3} \mid 2x_{1} + x_{2} - 4x_{3} = 0 \right\}$$

Example. The one-element set $\{0\}$ is a subspace of \mathbb{R}^n . The set \mathbb{R}^n is a subspace of \mathbb{R}^n .

Example. Let W be the set of all vectors in \mathbb{R}^2 whose both components are integers. Is W a subspace of \mathbb{R}^2 ?

Example (Theorem 4.1). If S is any nonempty subset or \mathbf{R}^n , then $\operatorname{Span} S$ is a subspace of \mathbf{R}^n . With this in mind, draw some subspaces of \mathbf{R}^3 .

Definition (subspaces associated with a matrix). Let A be an $m \times n$ matrix.

- The *null space* of A is the solution set of $A\mathbf{x} = \mathbf{0}$, denoted by Null A.
- The *column space* of A is the span of the columns of A, denoted by $\operatorname{Col} A$.
- The row space of A is the span of the rows of A, denoted by $\operatorname{Row} A$.

Theorem 4.2. Let A be an $m \times n$ matrix.

- The null space of A is a subspace of \mathbf{R}^n .
- The column space of A is a subspace of \mathbf{R}^m .
- The row space of A is a subspace of \mathbf{R}^n .

Proof.

Example. Write the generating sets for the null space, the column space and row space for the matrix below.

$$A = \begin{bmatrix} 1 & -4 & 7 & 1 & 3\\ 3 & -10 & 27 & 2 & -1\\ 1 & -3 & 10 & -1 & 5\\ 2 & -8 & 14 & 4 & -3 \end{bmatrix}$$

Subspaces associated with a linear transformation. Let $T : \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with standard matrix A. Recall that the null space of T is all vectors x so that $T(\mathbf{x}) = \mathbf{0}$.

— The null space of T is the same as the null space of A, so it is a subspace of \mathbf{R}^n .

— The range of T is the column space of A, so it is a subspace of \mathbb{R}^m .

4.2 Basis and Dimension

Definition. Let V be a nonzero subspace of \mathbb{R}^n . A *basis* for V is a linearly independent generating set.

Example.

 $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ is a basis for \mathbf{R}^n Any two nonparallel vectors in \mathbf{R}^2 are a basis for \mathbf{R}^2

Recall these theorems:

Theorem 1.7. Span $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{v}\} =$ Span $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ if and only if \mathbf{v} is in Span $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$. **Theorem 1.9.** $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is linearly dependent if and only if $\mathbf{u}_1 = \mathbf{0}$ or there is an $i \ge 2$ such that \mathbf{u}_i is a linear combination of its predecessors.

Theorem 4.3 (Reduction Theorem). If S is a finite generating set for a nonzero subspace V or \mathbb{R}^n , then S can be reduced to a basis for V by removing vectors from S.

Proof.

Example. Reduce the following generating set to a basis: $\left\{ \begin{bmatrix} 1\\0\\4 \end{bmatrix}, \begin{bmatrix} 0\\-1\\3 \end{bmatrix}, \begin{bmatrix} 2\\-1\\11 \end{bmatrix} \right\}$

Theorem 4.4 (Extension Theorem). Let S be a linearly independent subset of a nonzero subspace V of \mathbb{R}^n . Then S can be extended to a basis for V by including additional vectors from V in S. In particular, every nonzero subspace has a basis, which means every subspace is a span of finitely many vectors.

Proof.

Theorem 4.5. Let V be a subspace of \mathbb{R}^n . Then any two bases for V contain the same number of elements.

Proof.

Definition. The number of vectors in a basis for a nonzero subspace V or \mathbb{R}^n is called the *dimension* of V, denoted dim V. We define the dimension of the zero subspace to be 0.

Example. Is
$$\left\{ \begin{bmatrix} 2\\-1\\3\\5 \end{bmatrix}, \begin{bmatrix} 1\\-1\\7\\4 \end{bmatrix}, \begin{bmatrix} -5\\4\\3\\0 \end{bmatrix} \right\}$$
 a basis for \mathbb{R}^4 ?

Theorem 4.6. Let V be a k-dimensional subspace of \mathbb{R}^n . Then

— Every linearly independent set of V contains at most k vectors.

— Every subset with more than k vectors is linearly independent.

Proof.

Theorem 4.7. Let V be a k-dimensional subspace of \mathbb{R}^n , and \mathcal{S} a set with k vectors. Then — If \mathcal{S} is linearly independent, it is a basis for V.

— If \mathcal{S} is a generating set for V, it is a basis for V.

Proof.

Example. Find a basis for the null space and column space of the matrix below.

A =	-3	-6	3	-2]
A =	-2	-5	3	5
	4	9	-5	6

Example.

Is
$$\left\{ \begin{bmatrix} 3\\3\\-1 \end{bmatrix}, \begin{bmatrix} 1\\21\\-17 \end{bmatrix} \right\}$$
 a basis for the subspace generated by $\left\{ \begin{bmatrix} 1\\3\\-2 \end{bmatrix}, \begin{bmatrix} 1\\9\\-7 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix} \right\}$?

Summary. To show a set \mathcal{B} is a basis for a subspace V of \mathbb{R}^n :

- 1. Show \mathcal{B} is contained in V.
- 2. Show \mathcal{B} is linearly independent or that it generates V.
- 3. Compute dim V and check it equal the number of vectors in \mathcal{B} .

Matrix Theory — Lecture notes MAT 335, Fall 2022 — D. Ivanšić

$\frac{4.3 \text{ Dimensions of Subspaces}}{\text{Associated with a Matrix}}$

Proposition. Let A be and $m \times n$ matrix. The following are dimensions of subspaces associated with the matrix A.

Subspace	Notation	Subspace of	Dimension
column space of A	$\operatorname{Col} A$	\mathbf{R}^m	rank A
null space of A	Null A	\mathbf{R}^n	nullity $A = n - \operatorname{rank} A$
row space of A	Row A	\mathbf{R}^n	rank A

Proof.

Theorem 4.8. The nonzero rows in the reduced row echelon form of a matrix are the basis of the row space of the matrix.

Proof. We show that $\operatorname{Row} A = \operatorname{Row} R$.

Note. rank $A = \operatorname{rank} A^T$

Theorem 4.9. If V and W are subspaces of \mathbb{R}^n and V is contained in W, then $\dim V \leq \dim W$. If, additionally, $\dim V = \dim W$, then V = W.