Matrix Theory-Lecture notes
MAT 335, Fall $2022-$ D. Ivanšić

3.1 Cofactor Expansion of Determinants

Example. Find a simple condition under which the system below has a solution for every $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. Because the corresponding matrix A is 2×2, having a solution for every \mathbf{b} automatically guarantees it is unique, because it boils down to $\operatorname{rank} A=2$, which is further equivalent to matrix A being invertible.
$\left\{\begin{array}{l}a x_{1}+b x_{2}=b_{1} \\ c x_{1}+d x_{2}=b_{2}\end{array}\right.$
$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

Proposition. The matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible if and only if $a d-b c \neq 0$.
Because the scalar $a d-b c$ determines whether A is invertible, it is called the determinant of A and $\operatorname{denoted} \operatorname{det} A$ (or $|A|$, when the matrix is written out). For square matrices, the determinant is defined recursively, by "expansion along a row".

Example. Find the determinant of the matrix below by expanding it
a) along the first row
b) along the second row.
$\left|\begin{array}{rrr}7 & 1 & 1 \\ 4 & -2 & 0 \\ -1 & 3 & -4\end{array}\right|$

Definition. Let A be an $n \times n$ matrix, and let $A_{i j}$ be the $(n-1) \times(n-1)$ matrix obtained by removing the i-th row and j-th column of A. The determinant of A by expansion along row i is the number
$\operatorname{det} A=a_{i 1}(-1)^{i+1} \operatorname{det} A_{i 1}+a_{i 2}(-1)^{i+2} \operatorname{det} A_{i 2}+\cdots+a_{i j}(-1)^{i+j} \operatorname{det} A_{i j}+\cdots+a_{i n}(-1)^{i+n} \operatorname{det} A_{i n}$
If we set $c_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}$, and call $c_{i j}$ the (i, j)-cofactor of A, we can write this as

$$
\operatorname{det} A=a_{i 1} c_{i 1}+a_{i 2} c_{i 2}+\cdots+a_{i n} c_{i n}
$$

and call it the cofactor expansion of A along row i.
Theorem 3.1. For all $i=1, \ldots, n$, the determinant of A by expansion along row i results in the same number.

Note. The determinant of a 2×2 matrix is essentially expansion along the first row, if we understand the determinant of a 1×1 matrix to be the single scalar it contains.

Example. Find the determinant of the matrix below.

$$
\left|\begin{array}{rrrrr}
4 & 7 & 3 & 0 & 2 \\
2 & -9 & 1 & -2 & 3 \\
0 & 1 & 0 & 0 & 0 \\
2 & 4 & -1 & 1 & 2 \\
4 & -3 & 0 & 5 & 0
\end{array}\right|=
$$

Note.

To compute a	we have
2×2 determinant	2 multiplications, 1 addition
3×3 determinant	$3 \cdot 2$ multiplications, $3 \cdot 1+(3-1)=5=3!-1$ additions
4×4 determinant	$4 \cdot 3 \cdot 2$ multiplications, $4(3!-1)+3=4!-1$ additions
5×5 determinant	$5 \cdot 4 \cdot 3 \cdot 2$ multiplications, $5(4!-1)+4=5!-1$ additions
\vdots	\vdots
$n \times n$ determinant	$n!$ multiplications, $n!-1$ additions

For a smallish 20×20 determinant, this is about 4.87×10^{18} multiplications and additions. If each operation takes 10^{-9} seconds on a computer, this takes some 154 years - impractical! This is not the way to compute large determinants.

Definition. An $n \times n$ matrix is

- upper triangular, if all entries below the diagonal are 0
- lower triangular, if all entries above the diagonal are 0

Example. A is upper and B is lower triangular. Find $\operatorname{det} A$.

$$
A=\left[\begin{array}{rrrr}
7 & 1 & 1 & -3 \\
0 & -2 & 0 & 5 \\
0 & 0 & -4 & -2 \\
0 & 0 & 0 & -3
\end{array}\right] \quad B=\left[\begin{array}{rrrr}
-2 & 0 & 0 & 0 \\
4 & -2 & 0 & 0 \\
-1 & 2 & -4 & 0 \\
0 & 1 & 7 & 5
\end{array}\right]
$$

Theorem 3.2. The determinant of an upper or lower triangular matrix is the product of the diagonal entries. In particular, $\operatorname{det} I_{n}=1$.

Proposition. Let \mathbf{a}, \mathbf{b} be vectors in \mathbf{R}^{2}, and $\mathbf{c}, \mathbf{d}, \mathbf{e}$ vectors in \mathbf{R}^{3}.

- The area of a parallelogram spanned by \mathbf{a}, \mathbf{b} is $\left|\operatorname{det}\left[\begin{array}{ll}\mathbf{a} & \mathbf{b}\end{array}\right]\right|$.
- The volume of the parallelepiped spanned by $\mathbf{c}, \mathbf{d}, \mathbf{e}$ is $\left|\operatorname{det}\left[\begin{array}{lll}\mathbf{c} & \mathbf{d} & \mathbf{e}\end{array}\right]\right|$.

Example. Find the area of the triangle $A B C$, if $A=(1,3), B=(3,0)$ and $C=(2,-1)$.

Note. Getting zero for the determinants above tells us \mathbf{a} and \mathbf{b} are parallel, and vectors \mathbf{c}, \mathbf{d} and \mathbf{e} are in the same plane. In other words, $\{\mathbf{a}, \mathbf{b}\}$ does not span \mathbf{R}^{2}, and $\{\mathbf{c}, \mathbf{d}, \mathbf{e}\}$ does not span \mathbf{R}^{3}, which we already knew, because the matrices involved are not invertible.

Matrix Theory - Lecture notes
 MAT 335, Fall 2022 - D. Ivanšić

3.2 Properties of Determinants

Theorem 3.4. Let A and $B n \times n$ matrices. The following statements are true:
(a) A is invertible if and only if $\operatorname{det} A \neq 0$.
(b) $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$
(c) $\operatorname{det} A^{T}=\operatorname{det} A$
(d) If A is invertible, then $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$

Proof. Statement b) is harder to prove, and we omit it. Assuming b), we can easily show a), d) and c).

Proposition. Let A be an invertible $n \times n$ matrix, and let C be the cofactor matrix of A : its (i, j)-entry is the (i, j)-cofactor of the matrix A. Then

$$
A^{-1}=\frac{1}{\operatorname{det} A} C^{T} \quad \begin{aligned}
& \text { In particular, } \\
& \text { if } a d-b c \neq 0
\end{aligned} \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Note. Thanks to statement c), we can expand determinants by columns as well.

Theorem 3.3.
Let A be an $n \times n$ matrix.

If B is obtained from A by:	Then:
swapping two rows of A	$\operatorname{det} B=-\operatorname{det} A$
multiplying a row of A by k	$\operatorname{det} B=k \operatorname{det} A$
adding a multiple of a row to another row	$\operatorname{det} B=\operatorname{det} A$

Proof. Since $B=E A$, for some elementary matrix E, so $\operatorname{det} B=\operatorname{det} E \cdot \operatorname{det} A$, we just need to find determinants of elementary matrices.

Proposition. If a square matrix has two proportional rows, its determinant is 0 .

Example. Use row operations to find the determinant of the matrix below, a much more efficient method than expansion by rows for large matrices.
$\left|\begin{array}{rrrr}4 & 3 & 0 & 2 \\ 2 & 1 & -2 & 3 \\ 2 & -1 & 1 & 2 \\ 4 & 0 & 5 & 2\end{array}\right|=$

Theorem 3.5 (Cramer's Rule). Let A be an invertible $n \times n$ matrix, \mathbf{x} in \mathbf{R}^{n} and let M_{i} be the matrix obtained from A by replacing column i of A by \mathbf{b}. Then the equation $A \mathbf{x}=\mathbf{b}$ has a unique solution \mathbf{x} with components

$$
x_{i}=\frac{\operatorname{det} M_{i}}{\operatorname{det} A} \text { for } i=1, \ldots, n
$$

Proof.

Example. Solve the system below with Cramer's rule.

$$
\left\{\begin{array}{r}
2 x_{1}-3 x_{2}=1 \\
x_{1}+2 x_{2}+3 x_{3}=4 \\
-4 x_{1}+2 x_{2}-5 x_{3}=0
\end{array}\right.
$$

