Matrix Theory — Lecture notes MAT 335, Fall 2022 — D. Ivanšić

3.1 Cofactor Expansion of Determinants

Example. Find a simple condition under which the system below has a solution for every $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. Because the corresponding matrix A is 2×2 , having a solution for every \mathbf{b} automatically guarantees it is unique, because it boils down to rank A = 2, which is further equivalent to matrix A being invertible.

$$\begin{cases} ax_1 + bx_2 = b_1 \\ cx_1 + dx_2 = b_2 \end{cases}$$
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Proposition. The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $ad - bc \neq 0$.

Because the scalar ad - bc determines whether A is invertible, it is called the *determinant* of A and denoted det A (or |A|, when the matrix is written out). For square matrices, the determinant is defined recursively, by "expansion along a row".

Example. Find the determinant of the matrix below by expanding it a) along the first row b) along the second row.

$$\left|\begin{array}{rrrr} 7 & 1 & 1 \\ 4 & -2 & 0 \\ -1 & 3 & -4 \end{array}\right|$$

Definition. Let A be an $n \times n$ matrix, and let A_{ij} be the $(n-1) \times (n-1)$ matrix obtained by removing the *i*-th row and *j*-th column of A. The *determinant* of A by expansion along row *i* is the number

 $\det A = a_{i1}(-1)^{i+1} \det A_{i1} + a_{i2}(-1)^{i+2} \det A_{i2} + \dots + a_{ij}(-1)^{i+j} \det A_{ij} + \dots + a_{in}(-1)^{i+n} \det A_{in}$

If we set $c_{ij} = (-1)^{i+j} \det A_{ij}$, and call c_{ij} the (i, j)-cofactor of A, we can write this as

 $\det A = a_{i1}c_{i1} + a_{i2}c_{i2} + \dots + a_{in}c_{in}$

and call it the cofactor expansion of A along row i.

Theorem 3.1. For all i = 1, ..., n, the determinant of A by expansion along row i results in the same number.

Note. The determinant of a 2×2 matrix is essentially expansion along the first row, if we understand the determinant of a 1×1 matrix to be the single scalar it contains.

Example. Find the determinant of the matrix below.

4	7	3	0	2	
2	-9	1	-2	3	
0	1	0	0	0	=
2	4	-1	1	2	
4	-3	0	5	0	

Note.

To compute a	we have
2×2 determinant	2 multiplications, 1 addition
3×3 determinant	$3 \cdot 2$ multiplications, $3 \cdot 1 + (3 - 1) = 5 = 3! - 1$ additions
4×4 determinant	$4 \cdot 3 \cdot 2$ multiplications, $4(3! - 1) + 3 = 4! - 1$ additions
5×5 determinant	$5 \cdot 4 \cdot 3 \cdot 2$ multiplications, $5(4! - 1) + 4 = 5! - 1$ additions
\vdots	:
$n \times n$ determinant	n! multiplications, $n! - 1$ additions

For a smallish 20×20 determinant, this is about 4.87×10^{18} multiplications and additions. If each operation takes 10^{-9} seconds on a computer, this takes some 154 years — impractical! This is not the way to compute large determinants.

Definition. An $n \times n$ matrix is

- upper triangular, if all entries below the diagonal are 0
- *lower triangular*, if all entries above the diagonal are 0

Example. A is upper and B is lower triangular. Find det A.

$$A = \begin{bmatrix} 7 & 1 & 1 & -3\\ 0 & -2 & 0 & 5\\ 0 & 0 & -4 & -2\\ 0 & 0 & 0 & -3 \end{bmatrix} \qquad B = \begin{bmatrix} -2 & 0 & 0 & 0\\ 4 & -2 & 0 & 0\\ -1 & 2 & -4 & 0\\ 0 & 1 & 7 & 5 \end{bmatrix}$$

Theorem 3.2. The determinant of an upper or lower triangular matrix is the product of the diagonal entries. In particular, det $I_n = 1$.

Proposition. Let \mathbf{a}, \mathbf{b} be vectors in \mathbf{R}^2 , and $\mathbf{c}, \mathbf{d}, \mathbf{e}$ vectors in \mathbf{R}^3 .

- The area of a parallelogram spanned by \mathbf{a}, \mathbf{b} is $|\det \begin{bmatrix} \mathbf{a} & \mathbf{b} \end{bmatrix}|$.
- The volume of the parallelepiped spanned by $\mathbf{c}, \mathbf{d}, \mathbf{e}$ is $|\det [\mathbf{c} \ \mathbf{d} \ \mathbf{e}]|$.

Example. Find the area of the triangle ABC, if A = (1,3), B = (3,0) and C = (2,-1).

Note. Getting zero for the determinants above tells us \mathbf{a} and \mathbf{b} are parallel, and vectors \mathbf{c}, \mathbf{d} and \mathbf{e} are in the same plane. In other words, $\{\mathbf{a}, \mathbf{b}\}$ does not span \mathbf{R}^2 , and $\{\mathbf{c}, \mathbf{d}, \mathbf{e}\}$ does not span \mathbf{R}^3 , which we already knew, because the matrices involved are not invertible.

$\frac{3.2 \text{ Properties of}}{\text{Determinants}}$

Theorem 3.4. Let A and $B \ n \times n$ matrices. The following statements are true:

- (a) A is invertible if and only if det $A \neq 0$.
- (b) $\det(AB) = \det A \cdot \det B$
- (c) $\det A^T = \det A$
- (d) If A is invertible, then det $A^{-1} = \frac{1}{\det A}$

Proof. Statement b) is harder to prove, and we omit it. Assuming b), we can easily show a), d) and c).

Proposition. Let A be an invertible $n \times n$ matrix, and let C be the *cofactor matrix* of A: its (i, j)-entry is the (i, j)-cofactor of the matrix A. Then

$$A^{-1} = \frac{1}{\det A} C^T \qquad \text{In particular,} \quad \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Note. Thanks to statement c), we can expand determinants by columns as well.

Theorem 3.3.	If B is obtained from A by:	Then:	
Let A be an $n \times n$ matrix.	swapping two rows of A	$\det B = -\det A$	
	multiplying a row of A by k	$\det B = k \det A$	
	adding a multiple of a row to another row	$\det B = \det A$	

Proof. Since B = EA, for some elementary matrix E, so det $B = \det E \cdot \det A$, we just need to find determinants of elementary matrices.

Proposition. If a square matrix has two proportional rows, its determinant is 0.

Example. Use row operations to find the determinant of the matrix below, a much more efficient method than expansion by rows for large matrices.

4	3	0	2	
2	1	-2	3	
2	-1	1	2	=
4	0	5	2	

Theorem 3.5 (Cramer's Rule). Let A be an invertible $n \times n$ matrix, \mathbf{x} in \mathbf{R}^n and let M_i be the matrix obtained from A by replacing column i of A by \mathbf{b} . Then the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution \mathbf{x} with components

$$x_i = \frac{\det M_i}{\det A}$$
 for $i = 1, \dots, n$.

Proof.

Example. Solve the system below with Cramer's rule.

ſ	$2x_1$	$-3x_{2}$		=	1
ł	x_1	$+2x_{2}$	$+3x_{3}$	=	4
l	$-4x_1$	$+2x_{2}$	$-5x_{3}$	=	0