Let ${\bf v}$ be a $p\times 1$ vector, B an $n\times p$ matrix and A an $m\times n$ matrix. These dimensions have been set up so that

 $B\mathbf{v}$ is defined, and is an $n \times 1$ vector, and $A(B\mathbf{v})$ is defined, and is an $m \times 1$ vector

We could ask if there is a single matrix C, necessarily with dimensions $m \times p$, so that

 $C\mathbf{v} = A(B\mathbf{v})$, for every vector \mathbf{v} in \mathbf{R}^p

Definition. Let A an $m \times n$ matrix and B an $n \times p$ matrix, where $\mathbf{b}_1, \ldots, \mathbf{b}_p$ are columns of B. We define the matrix product of A and B as the matrix $m \times p$ matrix C with columns

$$AB = C = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$$

The columns $A\mathbf{b}_1, \ldots, A\mathbf{b}_p$ are $m \times 1$, so AB is an $m \times p$ matrix.

Note. Under this setup, $(AB)\mathbf{v} = A(B\mathbf{v})$ for every \mathbf{v} in \mathbf{R}^p , because that was how AB was defined. For dimensions, we write $(m \times n)(n \times p) = (m \times p)$, and the product is defined when the inner dimensions are equal.

In the definition of the product, notice that the (i, j)-entry in the matrix AB is the *i*-th component of the vector $A\mathbf{b}_j$, which is the dot product of the *i*-th row of A with the vector \mathbf{b}_j , thus

the (i, j)-entry of the matrix AB is the dot product of the *i*-th row of A with the *j*-th column of B

Example. Find the product

$$\begin{bmatrix} 2 & -2 & 3 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 7 & 1 & -3 \\ 0 & -1 & 4 & 3 \\ 4 & 2 & 2 & 5 \end{bmatrix}$$

Example. Recall the data on nutritional value of various foods per 100g serving. Now consider two menus with indicated numbers of servings of chicken, rice and lettuce.

	chicken	rice	lettuce	m 1	m 9	
energy (kcal)	149	359	17	111. 1	111. Z	. . : .
fat (g)	6	1	0	2	3	cnicken
protein (g)	24	7	1	1	0	rice
carbohydrates (g)	0	80	3	2	3	lettuce

Compute the product of related matrices and interpret the meaning of the resulting matrix.

149	359	17	Γŋ	۰ T
6	1	0		3
24	7	1		
	80	3	L 2	3

Theorem 1.6. Let A, B be $m \times n$ matrices, C, D be $n \times p$ matrices and E, F be $p \times q$ matrices, and s a scalar. Then the following statements are true:

- (a) s(AC) = (sA)C = A(sC)
- (b) A(CE) = (AC)E (associativity)
- (c) (A+B)C = AC + BC (right distributive law)
- (d) A(C+D) = AC + AD (left distributive law)

(e)
$$I_m A = A = A I_n$$

- (f) Product of a matrix with a zero matrix is a zero matrix
- (g) $(AC)^T = C^T A^T$

Proof. Statements a)–f) are essentially consequences of similar rules for matrix-vector multiplication. Justifying g).

Example. The commutative rule AB = BA is absent, because it is NOT true in general. First, for both AB and BA to be defined and equal sizes, they have to be square. Compute the products below to see $AB \neq BA$ (actually, in this example $AA^T \neq A^TA$).

$\left[\begin{array}{c}1\\3\end{array}\right]$	$\begin{bmatrix} 2\\4 \end{bmatrix}$	$\left[\begin{array}{c}1\\2\end{array}\right]$	$\begin{bmatrix} 3\\4 \end{bmatrix}$
$\left[\begin{array}{c}1\\2\end{array}\right]$	$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$	$\left[\begin{array}{c}1\\3\end{array}\right]$	$\begin{bmatrix} 2\\ 4 \end{bmatrix}$

Definition. A *block matrix* is a matrix that is thought of as consisting of smaller matrices. A simple example is the matrix $\begin{bmatrix} A & B \end{bmatrix}$ that consists of matrices A, B with equal numbers of rows m. If C is a $k \times m$ matrix, then it is easy to see (consider columns of resulting matrices) that

C[A B] = [CA CB]

Definition. The (i, j)-entry of a matrix A is called a *diagonal entry* if i = j. The diagonal entries form the *diagonal* of A.

A square matrix is a diagonal matrix if all nondiagonal entries are zero, for example the zero matrix and I_n .

Example. Compute the products and make observations.

$$\begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -2 \\ -5 & 0 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 3 & -2 \\ -5 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Definition. A square matrix A is called

symmetric, if
$$A^T = A$$
 skew-symmetric, if $A^T = -A$

Example.

$$\begin{bmatrix} 1 & 3 & -5 \\ 3 & -1 & 2 \\ -5 & 2 & 4 \end{bmatrix} \qquad \begin{bmatrix} 0 & 3 & -5 \\ -3 & 0 & 2 \\ 5 & -2 & 0 \end{bmatrix}$$

Matrix Theory — Lecture notes MAT 335, Fall 2022 — D. Ivanšić

2.3 Invertibility and Elementary Matrices

Definition. An $n \times n$ matrix A is called *invertible* if there exists an $n \times n$ matrix B such that $AB = BA = I_n$. In this case, B is called the *inverse* of A.

Note. If an inverse of A exists, it is unique and we denote it A^{-1} .

Example.

[1	4]	-11	4]		-11	4	[1	4	
3	11	3	-1	=	3	-1	3	11	

Example. The following matrices do not have an inverse, because no matrix B can multiply them to get I.

zero matrix

any matrix with a zero column

any matrix with two proportional columns

If a matrix A has an inverse, then the system $A\mathbf{x} = \mathbf{b}$ is easy to solve, $\mathbf{x} = A^{-1}\mathbf{b}$.

Example. Solve the system.

$$\begin{bmatrix} 1 & 4 \\ 3 & 11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

Theorem 2.2. Let A, B be invertible $n \times n$ matrices. Then

- (a) A^{-1} is invertible and $(A^{-1})^{-1} = A$
- (b) AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$
- (c) A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$

Proof. We simply check that the matrices proposed as inverses satisfy the definition of the inverse:

Definition. An $m \times m$ matrix E is called an *elementary matrix* if it is the result of a single elementary row operation on I_m .

Example. Three elementary matrices corresponding to three elementary row operations.

Γ1	. 0	0	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	1	0	0
0) ()	1	0 -2 0	0	1	3
) 1	0		0	0	1

Example. Observe what happens when these matrices multiply a matrix on the *left*.

$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 3 & 7 \\ -2 & 5 \end{bmatrix} =$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 3 & 7 \\ -2 & 5 \end{bmatrix} =$
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 3 & 7 \\ -2 & 5 \end{bmatrix} =$	

Proposition. Multiplying an $m \times n$ matrix A by an elementary matrix E on the left results in performing the same row operation on A that produced E.

Proposition. Every elementary matrix E is invertible, and its inverse is the elementary matrix resulting from the row operation that reverses the row operation that produced E.

Proof. If F is produced by the row operation that reverses the row operation producing E. then FE will be the matrix with the reversing row operation applied to E, producing I. Therefore, FE = I. Similarly EF = I because the row operation that produces E reverses the row operation that produces F.

$\left[\begin{array}{rrr}1&0\\0&1\\0&0\end{array}\right]$	$ \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} = $	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix} =$
$ \left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} =$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} =$

Theorem 2.3 Let A be an $m \times n$ matrix with reduced row echelon form R. Then there exists an invertible $m \times m$ matrix P such that PA = R.

Proof.

Proposition. (Column Correspondence Property) For a matrix A and its reduced row echelon form R, any linear combination of columns of R that is equal to the zero vector is true, with same coefficients, for the corresponding columns of A. In particular, if column jof R is a linear combination of some other columns, then column j of A is a linear combination of the corresponding columns of A, with the same coefficients.

Proof. This follows from the fact that $A\mathbf{x} = \mathbf{0}$ and $R\mathbf{x} = \mathbf{0}$ have the same solutions.

Example. Verify the statement on these matrices and show that the columns of A containing the leading 1's are linearly independent.

$\begin{bmatrix} -2 & -2 & 10 & -7 & 3 \\ 0 & 1 & 2 & -1 & 0 \\ 1 & 3 & -1 & 2 & 2 \\ -2 & 0 & 14 & -9 & 3 \end{bmatrix}$	has reduced [1] row echelon [0] form [0]	0 1 0	-7 2 0	0 0 1	$\begin{bmatrix} -33\\7\\7 \end{bmatrix}$	
---	--	-------------	------------	-------------	---	--

Theorem 2.5. Let A be an $n \times n$ matrix. Then A is invertible if and only if its reduced row echelon form is I_n .

Proof.

The theorem helps us determine whether A is invertible and find its inverse.

Algorithm for Matrix Inversion. Let A be an $n \times n$ matrix, and use row operations to transform $\begin{bmatrix} A & I_n \end{bmatrix}$ to form $\begin{bmatrix} R & B \end{bmatrix}$, where R is the reduced row echelon form of A. Then either

- (a) $R = I_n$, in which case A is invertible and $B = A^{-1}$, or
- (b) $R \neq I_n$, in which case A is not invertible.

Example. Find the inverse of the matrix at left.

1	-4	7	1	0	0
3	-10	26	0	1	0
1	-3	10	0	0	1

Theorem 2.6. (Invertible Matrix Theorem) Let A be an $n \times n$ matrix. Then the following statements are equivalent:

- (a) A is invertible.
- (b) The reduced row echelon form of A is I_n .
- (c) rank A = n
- (d) Span of columns of A is \mathbf{R}^n .
- (e) The equation $A\mathbf{x} = \mathbf{b}$ is consistent for every b in \mathbf{R}^n .
- (f) nullity A = 0
- (g) The columns of A are linearly independent.
- (h) The only solution to $A\mathbf{x} = \mathbf{0}$ is $\mathbf{0}$.
- (i) There exists an $n \times n$ matrix B such that $BA = I_n$.
- (j) There exists an $n \times n$ matrix C such that $AC = I_n$.
- (k) A is a product of elementary matrices.

Proof. $a \iff b$ by Theorem 2.5, $b \iff c \iff d \iff e \iff f \iff g \iff h$ by Theorems 1.6, 1.8 and the fact that the matrix is $n \times n$. We show $a \iff k, a \implies i \implies h \implies a$ and $a \implies j \implies e \implies a$.

Example. Note that BA = I implies that A is invertible only because A is a square matrix. This is not true for a non-square matrix. The product of the matrices below is I_2 , but neither is invertible.

$$\begin{bmatrix} 1 & 4 & 2 \\ 3 & 11 & 7 \end{bmatrix} \begin{bmatrix} -11 & 4 \\ 3 & -1 \\ 0 & 0 \end{bmatrix} =$$

2.7 Linear Transformations and Matrices

Definition. Let X and Y be sets. A function f from X to Y is a rule that assigns to every element x of X a unique element f(x) of Y. Furthermore, we define these terms:

- the element f(x) is called the *image* of x (under f)
- the set X is called the *domain* of f
- the set Y is called the *codomain* of f
- the range of f is the set of images f(x) for all x in X.

Example. Consider $f : \{1, 2, 3, 4\} \rightarrow \{4, 7, 9\}$ given by the table. Identify the sets discussed in the definition for this example.

x	1	2	3	4
f(x)	9	4	9	4

We will mainly be considering functions $f : \mathbf{R}^n \to \mathbf{R}^m$, they send vectors \mathbf{v} in \mathbf{R}^n to vectors $f(\mathbf{v})$ in \mathbf{R}^m .

Example. For the matrix $\begin{bmatrix} 3 & -7 & 1 \\ 4 & 2 & -1 \end{bmatrix}$, consider the function $T_A : \mathbf{R}^3 \to \mathbf{R}^2$ given by $T_A(\mathbf{x}) = A\mathbf{x}$. This function sends vectors from space to vectors in a plane. Write the formula for $T_A\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right)$.

Example. Consider $f : \mathbf{R}^2 \to \mathbf{R}^2$, $f(\mathbf{v}) =$ the vector obtained by rotating \mathbf{v} by $\frac{3\pi}{4}$. Then we have seen that

$$f(\mathbf{v}) = \begin{bmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix} \mathbf{v}$$

Definition. Let A be an $m \times n$ matrix. The function $T_A : \mathbf{R}^n \to \mathbf{R}^m$ given by $T_A(\mathbf{x}) = A\mathbf{x}$ is called a *matrix transformation induced by* A.

In this course we will mainly be considering functions $T : \mathbf{R}^n \to \mathbf{R}^m$ that are matrix transformations.

Example. What does the matrix transformation induced by the matrix below do?

 $\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]$

Example. What does the matrix transformation induced by the matrix below do?

 $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ (shear transformation)

In this course we will mainly be considering functions $T: \mathbf{R}^n \to \mathbf{R}^m$ that have a special property.

Definition. A function $T : \mathbf{R}^n \to \mathbf{R}^m$ is called a *linear transformation* or just *linear* if, for all vectors \mathbf{u}, \mathbf{v} in \mathbf{R}^n and all scalars c, we have:

(i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ (*T* preserves vector addition) (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ (*T* preserves scalar multiplication)

Example. This is easy: find an example of a function $T : \mathbf{R} \to \mathbf{R}$ which:

a) fails to preserve vector addition

b) fails to preserve scalar multiplication

Example (Theorem 2.7). Show that every matrix transformation $T_A : \mathbf{R}^n \to \mathbf{R}^m$ is a linear transformation.

Theorem 2.8. For all vectors \mathbf{u}, \mathbf{v} in \mathbf{R}^n and all scalars a, b, every linear transformation $T : \mathbf{R}^n \to \mathbf{R}^m$ satisfies:

- (a) T(0) = 0
- (b) $T(-\mathbf{u}) = -T(\mathbf{u})$
- (c) $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v})$
- (d) $T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v})$
- (e) $T(a_1\mathbf{u}_1 + \ldots a_k\mathbf{u}_k) = a_1T(\mathbf{u}_1) + \cdots + a_kT(\mathbf{u}_k)$, for all vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ in \mathbf{R}^n and all scalars a_1, \ldots, a_k .

Proof.

Theorem 2.9. Let $T : \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Then T is a matrix transformation T_A whose matrix

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \dots & T(\mathbf{e}_k) \end{bmatrix}$$

consists of columns that are images under T of standard basis vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n$ of \mathbf{R}^n .

Proof.

Definition. The matrix

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \dots & T(\mathbf{e}_k) \end{bmatrix}$$

is called the *standard matrix* of T. (It has the property that $T(\mathbf{v}) = A\mathbf{v}$ for every \mathbf{v} in \mathbf{R}^n .

2.8 Composition, Invertibility of Linear Transformations

Definition. Let X and Y be sets. A function f from X to Y is said to be:

- onto, if the range of f equals Y.
- one-to-one, if it sends distinct elements to distinct images, in other words, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$, for all x_1, x_2 in X.
- (equivalently) onto, if for every y in Y there is an x in X so that f(x) = y.
- (equivalently) one-to-one, if $f(x_1) = f(x_2)$, then $x_1 = x_2$, for all x_1, x_2 in X.

Example. Consider functions with codomain $\{4, 7, 9, 11\}$ given by the tables below. Which ones are a) onto? b) one-to-one ?

x	1	2	3	x	1	2	3	4	x	1	2	3	4	x	1	2	3	4	5
f(x)	9	4	7	g(x)	9	7	11	4	h(x)	9	9	11	4	k(x)	9	4	9	11	7

Now consider linear transformations $T: \mathbf{R}^n \to \mathbf{R}^m$ (that is, matrix transformations).

Proposition. The range of a linear transformation T is the span of the columns of its standard matrix.

Example. Is the linear transformation $T : \mathbf{R}^2 \to \mathbf{R}^3$ onto?

$$T\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right) = \left[\begin{array}{c}2x_1+x_2\\-x_1+3x_2\\5x_1-x_2\end{array}\right]$$

Theorem 2.10. Let $f : \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with standard matrix A. The following statements are equivalent:

- (a) T is onto, that is, range of T is \mathbf{R}^m .
- (b) The columns of A span \mathbf{R}^m .
- (c) $\operatorname{rank} A = m$
- (d) For every **b** in \mathbf{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.

Proof.

Definition. Let $T : \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. The *null space* of T is the set of all vectors \mathbf{v} in \mathbf{R}^n such that $T(\mathbf{v}) = \mathbf{0}$. Note that $\mathbf{0}$ is always in the null space of T.

Proposition. A linear transformation is one-to-one if and only if its null space contains only 0.

Proof.

Example. Is the linear transformation $T : \mathbf{R}^2 \to \mathbf{R}^3$ one-to-one?

 $T\left(\left[\begin{array}{c} x_1\\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} 2x_1 + x_2\\ -x_1 + 3x_2\\ 5x_1 - x_2 \end{array}\right]$

Theorem 2.11. Let $f : \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with standard matrix A. The following statements are equivalent:

- (a) T is one-to-one.
- (b) The null space of T consists only of the zero vector.
- (c) The columns of A are linearly independent.
- (d) rank A = n
- (d) The only solution of the equation $A\mathbf{x} = \mathbf{0}$ is $\mathbf{0}$.

Proof.

Definition. Let $f: X \to Y$ and $g: Y \to Z$ be functions. The composition of functions f and g is defined to be the function $g \circ f: X \to Z$ given by

$$(g \circ f)(x) = g(f(x)),$$
 for every x in X

Example. Consider functions $f : \{1, 2, 3, 4\} \rightarrow \{4, 7, 9\}$ and $g : \{4, 7, 9\} \rightarrow \{15, 17, 20, 24\}$ given by the tables. Determine the function $g \circ f$.

x	1	2	3	4	x	4	7	9	_	x	1	2	3	4
f(x)	7	4	9	4	g(x)	20	15	24		$(g \circ f)(x)$				

Example. Let $T_A : \mathbf{R}^n \to \mathbf{R}^m$ and $T_B : \mathbf{R}^m \to \mathbf{R}^p$ be linear transformations induced by matrices A and B. Show that $T_B \circ T_A = T_{BA}$.

For this reason, when writing compositions of linear transformations, we usually omit " \circ ", so $T_B \circ T_A$ is written as $T_B T_A$, thus, the above example reads as $T_B T_A = T_{BA}$.

Theorem 2.12. Let $T : \mathbf{R}^n \to \mathbf{R}^m$ and $U : \mathbf{R}^m \to \mathbf{R}^p$ be linear transformations with standard matrices A and B, respectively. Then $UT : \mathbf{R}^n \to \mathbf{R}^p$ is also linear and its standard matrix is BA.

Example. Compute the composite UT of the linear transformations $T: \mathbb{R}^2 \to \mathbb{R}^3$ and $U: \mathbf{R}^3 \to \mathbf{R}^2$ directly and by using their standard matrices.

$$T\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right) = \left[\begin{array}{c}2x_1 + x_2\\-x_1 + 3x_2\\5x_1 - x_2\end{array}\right] \qquad U\left(\left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right]\right) = \left[\begin{array}{c}3x_1 - x_2 + 2x_3\\-3x_1 + 4x_2 + x_3\end{array}\right]$$

_

Definition. A function $f: X \to Y$ is said to be *invertible* if there is a function $g: Y \to X$ such that $g \circ f = id_X$ and $f \circ g = id_Y$, where id_X and id_Y are identity functions on X and Y.

Note. It is easy to see that any invertible function $f: X \to Y$ has to be onto and one-to-one. If f is invertible, the function g from the definition is unique and is called the *inverse of* f, denoted f^{-1} . It is given by:

 $f^{-1}(y) =$ the unique x that f sends to y, for every y in Y

Theorem 2.13. Let $T : \mathbf{R}^n \to \mathbf{R}^n$ be a linear transformations with standard matrix A. Then T is invertible if and only A is invertible, in which case $T^{-1} = T_{A^{-1}}$. Note this also implies that T^{-1} is linear and its standard matrix is A^{-1} .

Proof.

Property of T	rank of A	Solutions of $A\mathbf{x} = \mathbf{b}$	Columns of A
T is onto	$\operatorname{rank} A = m$	at least one for every b in \mathbf{R}^m	span \mathbf{R}^m
T is one-to-one	$\operatorname{rank} A = n$	at most one for every b in \mathbf{R}^m	are linearly independent
T is invertible	$\operatorname{rank} A = m = n$	unique solution for every b in \mathbf{R}^m	span \mathbf{R}^m and are linearly independent

Table summarizing essential takeaways for a linear transformation $T : \mathbf{R}^n \to \mathbf{R}^m$ with $m \times n$ standard matrix A.