Matrix Theory - Lecture notes

MAT 335, Fall 2022 - D. Ivanšić

2.1 Matrix Multiplication

Let \mathbf{v} be a $p \times 1$ vector, B an $n \times p$ matrix and A an $m \times n$ matrix. These dimensions have been set up so that
$B \mathbf{v}$ is defined, and is an $n \times 1$ vector, and $A(B \mathbf{v})$ is defined, and is an $m \times 1$ vector
We could ask if there is a single matrix C, necessarily with dimensions $m \times p$, so that

$$
C \mathbf{v}=A(B \mathbf{v}), \text { for every vector } \mathbf{v} \text { in } \mathbf{R}^{p}
$$

Definition. Let A an $m \times n$ matrix and B an $n \times p$ matrix, where $\mathbf{b}_{1}, \ldots \mathbf{b}_{p}$ are columns of B. We define the matrix product of A and B as the matrix $m \times p$ matrix C with columns

$$
A B=C=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{p}
\end{array}\right]
$$

The columns $A \mathbf{b}_{1}, \ldots, A \mathbf{b}_{p}$ are $m \times 1$, so $A B$ is an $m \times p$ matrix.
Note. Under this setup, $(A B) \mathbf{v}=A(B \mathbf{v})$ for every \mathbf{v} in \mathbf{R}^{p}, because that was how $A B$ was defined. For dimensions, we write $(m \times n)(n \times p)=(m \times p)$, and the product is defined when the inner dimensions are equal.

In the definition of the product, notice that the (i, j)-entry in the matrix $A B$ is the i th component of the vector $A \mathbf{b}_{j}$, which is the dot product of the i-th row of A with the vector \mathbf{b}_{j}, thus
the (i, j)-entry of the matrix $A B$ is the dot product of the i-th row of A with the j-th column of B

Example. Find the product
$\left[\begin{array}{rrr}2 & -2 & 3 \\ 1 & 0 & -1\end{array}\right]\left[\begin{array}{rrrr}1 & 7 & 1 & -3 \\ 0 & -1 & 4 & 3 \\ 4 & 2 & 2 & 5\end{array}\right]$

Example. Recall the data on nutritional value of various foods per 100 g serving. Now consider two menus with indicated numbers of servings of chicken, rice and lettuce.

	chicken	rice	lettuce	m. 1	m .2	
energy (kcal)	149	359	17	2	3	chicken
fat (g)	6	1	0	1	0	rice
protein (g)	24	7	1	2	3	lettuce

Compute the product of related matrices and interpret the meaning of the resulting matrix.

$$
\left[\begin{array}{rrr}
149 & 359 & 17 \\
6 & 1 & 0 \\
24 & 7 & 1 \\
0 & 80 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
1 & 0 \\
2 & 3
\end{array}\right]
$$

Theorem 1.6. Let A, B be $m \times n$ matrices, C, D be $n \times p$ matrices and E, F be $p \times q$ matrices, and s a scalar. Then the following statements are true:
(a) $s(A C)=(s A) C=A(s C)$
(b) $A(C E)=(A C) E$ (associativity)
(c) $(A+B) C=A C+B C$ (right distributive law)
(d) $A(C+D)=A C+A D$ (left distributive law)
(e) $I_{m} A=A=A I_{n}$
(f) Product of a matrix with a zero matrix is a zero matrix
(g) $(A C)^{T}=C^{T} A^{T}$

Proof. Statements a)-f) are essentially consequences of similar rules for matrix-vector multiplication. Justifying g).

Example. The commutative rule $A B=B A$ is absent, because it is NOT true in general. First, for both $A B$ and $B A$ to be defined and equal sizes, they have to be square. Compute the products below to see $A B \neq B A$ (actually, in this example $A A^{T} \neq A^{T} A$).
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$
$\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

Definition. A block matrix is a matrix that is thought of as consisting of smaller matrices. A simple example is the matrix [$A \quad B$] that consists of matrices A, B with equal numbers of rows m. If C is a $k \times m$ matrix, then it is easy to see (consider columns of resulting matrices) that

$$
C\left[\begin{array}{ll}
A & B
\end{array}\right]=\left[\begin{array}{ll}
C A & C B
\end{array}\right]
$$

Definition. The (i, j)-entry of a matrix A is called a diagonal entry if $i=j$. The diagonal entries form the diagonal of A.

A square matrix is a diagonal matrix if all nondiagonal entries are zero, for example the zero matrix and I_{n}.

Example. Compute the products and make observations.
$\left[\begin{array}{rr}2 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{rrr}1 & 3 & -2 \\ -5 & 0 & 4\end{array}\right]$
$\left[\begin{array}{rrr}1 & 3 & -2 \\ -5 & 0 & 4\end{array}\right]\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$

Definition. A square matrix A is called

$$
\text { symmetric, if } A^{T}=A \quad \text { skew-symmetric, if } A^{T}=-A
$$

Example.

$$
\left[\begin{array}{rrr}
1 & 3 & -5 \\
3 & -1 & 2 \\
-5 & 2 & 4
\end{array}\right] \quad\left[\begin{array}{rrr}
0 & 3 & -5 \\
-3 & 0 & 2 \\
5 & -2 & 0
\end{array}\right]
$$

2.3 Invertibility and Elementary Matrices

Definition. An $n \times n$ matrix A is called invertible if there exists an $n \times n$ matrix B such that $A B=B A=I_{n}$. In this case, B is called the inverse of A.

Note. If an inverse of A exists, it is unique and we denote it A^{-1}.

Example.
$\left[\begin{array}{rr}1 & 4 \\ 3 & 11\end{array}\right]\left[\begin{array}{rr}-11 & 4 \\ 3 & -1\end{array}\right]=\quad\left[\begin{array}{rr}-11 & 4 \\ 3 & -1\end{array}\right]\left[\begin{array}{rr}1 & 4 \\ 3 & 11\end{array}\right]=$

Example. The following matrices do not have an inverse, because no matrix B can multiply them to get I.
zero matrix any matrix with a zero column
any matrix with two proportional columns

If a matrix A has an inverse, then the system $A \mathbf{x}=\mathbf{b}$ is easy to solve, $\mathbf{x}=A^{-1} \mathbf{b}$.
Example. Solve the system.

$$
\left[\begin{array}{rr}
1 & 4 \\
3 & 11
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1
\end{array}\right]
$$

Theorem 2.2. Let A, B be invertible $n \times n$ matrices. Then
(a) A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$
(b) $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$
(c) A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Proof. We simply check that the matrices proposed as inverses satisfy the definition of the inverse:

Definition. An $m \times m$ matrix E is called an elementary matrix if it is the result of a single elementary row operation on I_{m}.

Example. Three elementary matrices corresponding to three elementary row operations.
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]
$$

Example. Observe what happens when these matrices multiply a matrix on the left.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{rr}
4 & 2 \\
3 & 7 \\
-2 & 5
\end{array}\right]=} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
4 & 2 \\
3 & 7 \\
-2 & 5
\end{array}\right]=}
\end{aligned}
$$

Proposition. Multiplying an $m \times n$ matrix A by an elementary matrix E on the left results in performing the same row operation on A that produced E.

Proposition. Every elementary matrix E is invertible, and its inverse is the elementary matrix resulting from the row operation that reverses the row operation that produced E.

Proof. If F is produced by the row operation that reverses the row operation producing E, then $F E$ will be the matrix with the reversing row operation applied to E, producing I. Therefore, $F E=I$. Similarly $E F=I$ because the row operation that produces E reverses the row operation that produces F.

$$
\begin{array}{ll}
{\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]=} & {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]=} \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=} & {\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right]=}
\end{array}
$$

Theorem 2.3 Let A be an $m \times n$ matrix with reduced row echelon form R. Then there exists an invertible $m \times m$ matrix P such that $P A=R$.

Proof.

Proposition. (Column Correspondence Property) For a matrix A and its reduced row echelon form R, any linear combination of columns of R that is equal to the zero vector is true, with same coefficients, for the corresponding columns of A. In particular, if column j of R is a linear combination of some other columns, then column j of A is a linear combination of the corresponding columns of A, with the same coefficients.

Proof. This follows from the fact that $A \mathbf{x}=\mathbf{0}$ and $R \mathbf{x}=\mathbf{0}$ have the same solutions.
Example. Verify the statement on these matrices and show that the columns of A containing the leading 1's are linearly independent.

$$
\left[\begin{array}{rrrrr}
-2 & -2 & 10 & -7 & 3 \\
0 & 1 & 2 & -1 & 0 \\
1 & 3 & -1 & 2 & 2 \\
-2 & 0 & 14 & -9 & 3
\end{array}\right] \quad \begin{aligned}
& \text { has reduced } \\
& \text { row echelon } \\
& \text { form }
\end{aligned}\left[\begin{array}{rrrrr}
1 & 0 & -7 & 0 & -33 \\
0 & 1 & 2 & 0 & 7 \\
0 & 0 & 0 & 1 & 7
\end{array}\right]
$$

> Matrix Theory - Lecture notes
> MAT 335, Fall $2022-$ D. Ivanšić

2.4 The Inverse of a Matrix

Theorem 2.5. Let A be an $n \times n$ matrix. Then A is invertible if and only if its reduced row echelon form is I_{n}.

Proof.

The theorem helps us determine whether A is invertible and find its inverse.

Algorithm for Matrix Inversion. Let A be an $n \times n$ matrix, and use row operations to transform [$\left.\begin{array}{ll}A & I_{n}\end{array}\right]$ to form [R R B], where R is the reduced row echelon form of A. Then either
(a) $R=I_{n}$, in which case A is invertible and $B=A^{-1}$, or
(b) $R \neq I_{n}$, in which case A is not invertible.

Example. Find the inverse of the matrix at left.

$$
\left[\begin{array}{rrr|rrr}
1 & -4 & 7 & 1 & 0 & 0 \\
3 & -10 & 26 & 0 & 1 & 0 \\
1 & -3 & 10 & 0 & 0 & 1
\end{array}\right]
$$

Theorem 2.6. (Invertible Matrix Theorem) Let A be an $n \times n$ matrix. Then the following statements are equivalent:
(a) A is invertible.
(b) The reduced row echelon form of A is I_{n}.
(c) $\operatorname{rank} A=n$
(d) Span of columns of A is \mathbf{R}^{n}.
(e) The equation $A \mathbf{x}=\mathbf{b}$ is consistent for every b in \mathbf{R}^{n}.
(f) nullity $A=0$
(g) The columns of A are linearly independent.
(h) The only solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{0}$.
(i) There exists an $n \times n$ matrix B such that $B A=I_{n}$.
(j) There exists an $n \times n$ matrix C such that $A C=I_{n}$.
(k) A is a product of elementary matrices.

Proof. $a \Longleftrightarrow b$ by Theorem 2.5, $b \Longleftrightarrow c \Longleftrightarrow d \Longleftrightarrow e \Longleftrightarrow f \Longleftrightarrow g \Longleftrightarrow h$ by Theorems 1.6, 1.8 and the fact that the matrix is $n \times n$. We show $a \Longleftrightarrow k, a \Longrightarrow i \Longrightarrow h \Longrightarrow a$ and $a \Longrightarrow j \Longrightarrow e \Longrightarrow a$.

Example. Note that $B A=I$ implies that A is invertible only because A is a square matrix. This is not true for a non-square matrix. The product of the matrices below is I_{2}, but neither is invertible.
$\left[\begin{array}{rrr}1 & 4 & 2 \\ 3 & 11 & 7\end{array}\right]\left[\begin{array}{rr}-11 & 4 \\ 3 & -1 \\ 0 & 0\end{array}\right]=$

Matrix Theory - Lecture notes
MAT 335, Fall 2022 - D. Ivanšić

2.7 Linear Transformations

and Matrices

Definition. Let X and Y be sets. A function f from X to Y is a rule that assigns to every element x of X a unique element $f(x)$ of Y. Furthermore, we define these terms:

- the element $f(x)$ is called the image of x (under f)
- the set X is called the domain of f
- the set Y is called the codomain of f
- the range of f is the set of images $f(x)$ for all x in X.

Example. Consider $f:\{1,2,3,4\} \rightarrow\{4,7,9\}$ given by the table. Identify the sets discussed in the definition for this example.

x	1	2	3	4
$f(x)$	9	4	9	4

We will mainly be considering functions $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, they send vectors \mathbf{v} in \mathbf{R}^{n} to vectors $f(\mathbf{v})$ in \mathbf{R}^{m}.

Example. For the matrix $\left[\begin{array}{rrr}3 & -7 & 1 \\ 4 & 2 & -1\end{array}\right]$, consider the function $T_{A}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ given by $T_{A}(\mathbf{x})=A \mathbf{x}$. This function sends vectors from space to vectors in a plane. Write the formula for $T_{A}\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)$.

Example. Consider $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}, f(\mathbf{v})=$ the vector obtained by rotating \mathbf{v} by $\frac{3 \pi}{4}$. Then we have seen that

$$
f(\mathbf{v})=\left[\begin{array}{rr}
-\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}
\end{array}\right] \mathbf{v}
$$

Definition. Let A be an $m \times n$ matrix. The function $T_{A}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ given by $T_{A}(\mathbf{x})=A \mathbf{x}$ is called a matrix transformation induced by A.

In this course we will mainly be considering functions $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ that are matrix transformations.

Example. What does the
matrix transformation induced
by the matrix below do?
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

Example. What does the
matrix transformation induced
by the matrix below do?
$\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$
(shear transformation)

In this course we will mainly be considering functions $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ that have a special property.

Definition. A function $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is called a linear transformation or just linear if, for all vectors \mathbf{u}, \mathbf{v} in \mathbf{R}^{n} and all scalars c, we have:
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}) \quad(T$ preserves vector addition)
(ii) $T(c \mathbf{u})=c T(\mathbf{u}) \quad(T$ preserves scalar multiplication $)$

Example. This is easy: find an example of a function $T: \mathbf{R} \rightarrow \mathbf{R}$ which:
a) fails to preserve vector addition
b) fails to preserve scalar multiplication

Example (Theorem 2.7). Show that every matrix transformation $T_{A}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a linear transformation.

Theorem 2.8. For all vectors \mathbf{u}, \mathbf{v} in \mathbf{R}^{n} and all scalars a, b, every linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ satisfies:
(a) $T(\mathbf{0})=\mathbf{0}$
(b) $T(-\mathbf{u})=-T(\mathbf{u})$
(c) $T(\mathbf{u}-\mathbf{v})=T(\mathbf{u})-T(\mathbf{v})$
(d) $T(a \mathbf{u}+b \mathbf{v})=a T(\mathbf{u})+b T(\mathbf{v})$
(e) $T\left(a_{1} \mathbf{u}_{1}+\ldots a_{k} \mathbf{u}_{k}\right)=a_{1} T\left(\mathbf{u}_{1}\right)+\cdots+a_{k} T\left(\mathbf{u}_{k}\right)$, for all vectors $\mathbf{u}_{1}, \ldots \mathbf{u}_{k}$ in \mathbf{R}^{n} and all scalars a_{1}, \ldots, a_{k}.

Proof.

Theorem 2.9. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Then T is a matrix transformation T_{A} whose matrix

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \ldots & T\left(\mathbf{e}_{k}\right)
\end{array}\right]
$$

consists of columns that are images under T of standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ of \mathbf{R}^{n}.
Proof.

Definition. The matrix

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \ldots & T\left(\mathbf{e}_{k}\right)
\end{array}\right]
$$

is called the standard matrix of T. (It has the property that $T(\mathbf{v})=A \mathbf{v}$ for every \mathbf{v} in \mathbf{R}^{n}.

Matrix Theory - Lecture notes MAT 335, Fall 2022 - D. Ivanšić

2.8 Composition, Invertibility of Linear Transformations

Definition. Let X and Y be sets. A function f from X to Y is said to be:

- onto, if the range of f equals Y.
- one-to-one, if it sends distinct elements to distinct images, in other words, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$, for all x_{1}, x_{2} in X.
- (equivalently) onto, if for every y in Y there is an x in X so that $f(x)=y$.
- (equivalently) one-to-one, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$, for all x_{1}, x_{2} in X.

Example. Consider functions with codomain $\{4,7,9,11\}$ given by the tables below. Which ones are a) onto? b) one-to-one?

x	1	2	3	x	1	2	3	4	x	1	2	3	4	x	1	2	3	4	5
$f(x)$	9	4	7	$g(x)$	9	7	11	4	$h(x)$	9	9	11	4	$k(x)$	9	4	9	11	7

Now consider linear transformations $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ (that is, matrix transformations).
Proposition. The range of a linear transformation T is the span of the columns of its standard matrix.

Example. Is the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ onto?
$T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}2 x_{1}+x_{2} \\ -x_{1}+3 x_{2} \\ 5 x_{1}-x_{2}\end{array}\right]$

Theorem 2.10. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with standard matrix A. The following statements are equivalent:
(a) T is onto, that is, range of T is \mathbf{R}^{m}.
(b) The columns of A span \mathbf{R}^{m}.
(c) $\operatorname{rank} A=m$
(d) For every \mathbf{b} in \mathbf{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.

Proof.

Definition. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. The null space of T is the set of all vectors \mathbf{v} in \mathbf{R}^{n} such that $T(\mathbf{v})=\mathbf{0}$. Note that $\mathbf{0}$ is always in the null space of T.

Proposition. A linear transformation is one-to-one if and only if its null space contains only 0 .

Proof.

Example. Is the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ one-to-one?
$T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}2 x_{1}+x_{2} \\ -x_{1}+3 x_{2} \\ 5 x_{1}-x_{2}\end{array}\right]$

Theorem 2.11. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with standard matrix A. The following statements are equivalent:
(a) T is one-to-one.
(b) The null space of T consists only of the zero vector.
(c) The columns of A are linearly independent.
(d) $\operatorname{rank} A=n$
(d) The only solution of the equation $A \mathbf{x}=\mathbf{0}$ is $\mathbf{0}$.

Proof.

Definition. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. The composition of functions f and g is defined to be the function $g \circ f: X \rightarrow Z$ given by

$$
(g \circ f)(x)=g(f(x)), \text { for every } x \text { in } X
$$

Example. Consider functions $f:\{1,2,3,4\} \rightarrow\{4,7,9\}$ and $g:\{4,7,9\} \rightarrow\{15,17,20,24\}$ given by the tables. Determine the function $g \circ f$.

x	1	2	3	4					
$f(x)$	7	4	9	4	\quad	x	4	7	9
:---:	:---:	:---:	:---:						
$g(x)$	20	15	24	\quad	x	1	2	3	4
:---:	:---:	:---:	:---:	:---:					
$(g \circ f)(x)$									

Example. Let $T_{A}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $T_{B}: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ be linear transformations induced by matrices A and B. Show that $T_{B} \circ T_{A}=T_{B A}$.

For this reason, when writing compositions of linear transformations, we usually omit "०", so $T_{B} \circ T_{A}$ is written as $T_{B} T_{A}$, thus, the above example reads as $T_{B} T_{A}=T_{B A}$.

Theorem 2.12. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ be linear transformations with standard matrices A and B, respectively. Then $U T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{p}$ is also linear and its standard matrix is $B A$.

Example. Compute the composite $U T$ of the linear transformations $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ and $U: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ directly and by using their standard matrices.
$T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}2 x_{1}+x_{2} \\ -x_{1}+3 x_{2} \\ 5 x_{1}-x_{2}\end{array}\right] \quad U\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}3 x_{1}-x_{2}+2 x_{3} \\ -3 x_{1}+4 x_{2}+x_{3}\end{array}\right]$

Definition. A function $f: X \rightarrow Y$ is said to be invertible if there is a function $g: Y \rightarrow X$ such that $g \circ f=i d_{X}$ and $f \circ g=i d_{Y}$, where $i d_{X}$ and $i d_{Y}$ are identity functions on X and Y.

Note. It is easy to see that any invertible function $f: X \rightarrow Y$ has to be onto and one-to-one. If f is invertible, the function g from the definition is unique and is called the inverse of f, denoted f^{-1}. It is given by:

$$
f^{-1}(y)=\text { the unique } x \text { that } f \text { sends to } y \text {, for every } y \text { in } Y
$$

Theorem 2.13. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear transformations with standard matrix A. Then T is invertible if and only A is invertible, in which case $T^{-1}=T_{A^{-1}}$. Note this also implies that T^{-1} is linear and its standard matrix is A^{-1}.

Proof.

Table summarizing essential takeaways for a linear tranformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ with $m \times n$ standard matrix A.

Property of T	rank of A	Solutions of $A \mathbf{x}=\mathbf{b}$	Columns of A
T is onto	$\operatorname{rank} A=m$	at least one for every \mathbf{b} in \mathbf{R}^{m}	span \mathbf{R}^{m}
T is one-to-one	$\operatorname{rank} A=n$	at most one for every \mathbf{b} in \mathbf{R}^{m}	are linearly independent
T is invertible	$\operatorname{rank} A=m=n$	unique solution for every \mathbf{b} in \mathbf{R}^{m}	span \mathbf{R}^{m} and are linearly independent

