
Matrix Theory — Lecture notes
MAT 335, Fall 2022 — D. Ivanšić 2.1 Matrix Multiplication

Let v be a p× 1 vector, B an n× p matrix and A an m× n matrix. These dimensions have
been set up so that

Bv is defined, and is an n× 1 vector, and A(Bv) is defined, and is an m× 1 vector

We could ask if there is a single matrix C, necessarily with dimensions m× p, so that

Cv = A(Bv), for every vector v in Rp

Definition. Let A an m × n matrix and B an n × p matrix, where b1, . . .bp are columns
of B. We define the matrix product of A and B as the matrix m× p matrix C with columns

AB = C =
[
Ab1 Ab2 . . . Abp

]
The columns Ab1, . . . , Abp are m× 1, so AB is an m× p matrix.

Note. Under this setup, (AB)v = A(Bv) for every v in Rp, because that was how AB was
defined. For dimensions, we write (m × n)(n × p) = (m × p), and the product is defined
when the inner dimensions are equal.

In the definition of the product, notice that the (i, j)-entry in the matrix AB is the i-
th component of the vector Abj, which is the dot product of the i-th row of A with the
vector bj, thus

the (i, j)-entry of the matrix AB is the dot product
of the i-th row of A with the j-th column of B

Example. Find the product[
2 −2 3
1 0 −1

] 1 7 1 −3
0 −1 4 3
4 2 2 5


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Example. Recall the data on nutritional value of various foods per 100g serving. Now
consider two menus with indicated numbers of servings of chicken, rice and lettuce.

chicken rice lettuce
energy (kcal) 149 359 17

fat (g) 6 1 0
protein (g) 24 7 1

carbohydrates (g) 0 80 3

m. 1 m. 2
2 3 chicken
1 0 rice
2 3 lettuce

Compute the product of related matrices and interpret the meaning of the resulting matrix.


149 359 17
6 1 0
24 7 1
0 80 3


 2 3

1 0
2 3



Theorem 1.6. Let A,B be m × n matrices, C,D be n × p matrices and E,F be p × q
matrices, and s a scalar. Then the following statements are true:

(a) s(AC) = (sA)C = A(sC)

(b) A(CE) = (AC)E (associativity)

(c) (A+B)C = AC +BC (right distributive law)

(d) A(C +D) = AC + AD (left distributive law)

(e) ImA = A = AIn

(f) Product of a matrix with a zero matrix is a zero matrix

(g) (AC)T = CTAT

Proof. Statements a)–f) are essentially consequences of similar rules for matrix-vector mul-
tiplication. Justifying g).

Example. The commutative rule AB = BA is absent, because it is NOT true in general.
First, for both AB and BA to be defined and equal sizes, they have to be square. Compute
the products below to see AB ̸= BA (actually, in this example AAT ̸= ATA).[
1 2
3 4

] [
1 3
2 4

]
[
1 3
2 4

] [
1 2
3 4

]
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Definition. A block matrix is a matrix that is thought of as consisting of smaller matrices.
A simple example is the matrix [ A B ] that consists of matrices A,B with equal numbers
of rows m. If C is a k × m matrix, then it is easy to see (consider columns of resulting
matrices) that

C[ A B ] = [ CA CB ]

Definition. The (i, j)-entry of a matrix A is called a diagonal entry if i = j. The diagonal
entries form the diagonal of A.

A square matrix is a diagonal matrix if all nondiagonal entries are zero, for example the zero
matrix and In.

Example. Compute the products and make observations.[
2 0
0 −1

] [
1 3 −2

−5 0 4

]
[

1 3 −2
−5 0 4

] 2 0 0
0 −1 0
0 0 3



Definition. A square matrix A is called

symmetric, if AT = A skew-symmetric, if AT = −A

Example. 1 3 −5
3 −1 2

−5 2 4

  0 3 −5
−3 0 2
5 −2 0


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2.3 Invertibility and

Elementary Matrices

Definition. An n × n matrix A is called invertible if there exists an n × n matrix B such
that AB = BA = In. In this case, B is called the inverse of A.

Note. If an inverse of A exists, it is unique and we denote it A−1.

Example.[
1 4
3 11

] [
−11 4

3 −1

]
=

[
−11 4

3 −1

] [
1 4
3 11

]
=

Example. The following matrices do not have an inverse, because no matrix B can multiply
them to get I.

zero matrix any matrix with a zero column

any matrix with two proportional columns

If a matrix A has an inverse, then the system Ax = b is easy to solve, x = A−1b.

Example. Solve the system.[
1 4
3 11

] [
x1

x2

]
=

[
3
−1

]
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Theorem 2.2. Let A,B be invertible n× n matrices. Then

(a) A−1 is invertible and (A−1)−1 = A

(b) AB is invertible and (AB)−1 = B−1A−1

(c) AT is invertible and (AT )−1 = (A−1)T

Proof. We simply check that the matrices proposed as inverses satisfy the definition of the
inverse:

Definition. An m×m matrix E is called an elementary matrix if it is the result of a single
elementary row operation on Im.

Example. Three elementary matrices corresponding to three elementary row operations. 1 0 0
0 0 1
0 1 0

  1 0 0
0 −2 0
0 0 1

  1 0 0
0 1 3
0 0 1



Example. Observe what happens when these matrices multiply a matrix on the left. 1 0 0
0 0 1
0 1 0

 4 2
3 7

−2 5

 =

 1 0 0
0 −2 0
0 0 1

 4 2
3 7

−2 5

 =

 1 0 0
0 1 3
0 0 1

 4 2
3 7

−2 5

 =

Proposition. Multiplying an m×n matrix A by an elementary matrix E on the left results
in performing the same row operation on A that produced E.
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Proposition. Every elementary matrix E is invertible, and its inverse is the elementary
matrix resulting from the row operation that reverses the row operation that produced E.

Proof. If F is produced by the row operation that reverses the row operation producing E,
then FE will be the matrix with the reversing row operation applied to E, producing I.
Therefore, FE = I. Similarly EF = I because the row operation that produces E reverses
the row operation that produces F . 1 0 0

0 1 −3
0 0 1

 1 0 0
0 1 3
0 0 1

 =

 1 0 0
0 1 3
0 0 1

 1 0 0
0 1 −3
0 0 1

 =

 1 0 0
0 0 1
0 1 0

 1 0 0
0 0 1
0 1 0

 =

 1 0 0
0 −2 0
0 0 1

 1 0 0
0 −1

2
0

0 0 1

 =

Theorem 2.3 Let A be an m × n matrix with reduced row echelon form R. Then there
exists an invertible m×m matrix P such that PA = R.

Proof.

Proposition. (Column Correspondence Property) For a matrix A and its reduced row
echelon form R, any linear combination of columns of R that is equal to the zero vector is
true, with same coefficients, for the corresponding columns of A. In particular, if column j
of R is a linear combination of some other columns, then column j of A is a linear combination
of the corresponding columns of A, with the same coefficients.

Proof. This follows from the fact that Ax = 0 and Rx = 0 have the same solutions.

Example. Verify the statement on these matrices and show that the columns of A containing
the leading 1’s are linearly independent.

−2 −2 10 −7 3
0 1 2 −1 0
1 3 −1 2 2

−2 0 14 −9 3

 has reduced
row echelon
form

 1 0 −7 0 −33
0 1 2 0 7
0 0 0 1 7


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Theorem 2.5. Let A be an n × n matrix. Then A is invertible if and only if its reduced
row echelon form is In.

Proof.

The theorem helps us determine whether A is invertible and find its inverse.

Algorithm for Matrix Inversion. Let A be an n× n matrix, and use row operations to
transform [ A In ] to form [ R B ], where R is the reduced row echelon form of A. Then
either

(a) R = In, in which case A is invertible and B = A−1, or

(b) R ̸= In, in which case A is not invertible.

Example. Find the inverse of the matrix at left. 1 −4 7 1 0 0
3 −10 26 0 1 0
1 −3 10 0 0 1


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Theorem 2.6. (Invertible Matrix Theorem) Let A be an n × n matrix. Then the
following statements are equivalent:

(a) A is invertible.

(b) The reduced row echelon form of A is In.

(c) rankA = n

(d) Span of columns of A is Rn.

(e) The equation Ax = b is consistent for every b in Rn.

(f) nullityA = 0

(g) The columns of A are linearly independent.

(h) The only solution to Ax = 0 is 0.

(i) There exists an n× n matrix B such that BA = In.

(j) There exists an n× n matrix C such that AC = In.

(k) A is a product of elementary matrices.

Proof. a ⇐⇒ b by Theorem 2.5, b ⇐⇒ c ⇐⇒ d ⇐⇒ e ⇐⇒ f ⇐⇒ g ⇐⇒ h by Theorems
1.6, 1.8 and the fact that the matrix is n × n. We show a ⇐⇒ k, a =⇒ i =⇒ h =⇒ a and
a =⇒ j =⇒ e =⇒ a.

Example. Note that BA = I implies that A is invertible only because A is a square matrix.
This is not true for a non-square matrix. The product of the matrices below is I2, but neither
is invertible.[
1 4 2
3 11 7

] −11 4
3 −1
0 0

 =
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2.7 Linear Transformations

and Matrices

Definition. Let X and Y be sets. A function f from X to Y is a rule that assigns to every
element x of X a unique element f(x) of Y . Furthermore, we define these terms:

— the element f(x) is called the image of x (under f)

— the set X is called the domain of f

— the set Y is called the codomain of f

— the range of f is the set of images f(x) for all x in X.

Example. Consider f : {1, 2, 3, 4} → {4, 7, 9} given by the table. Identify the sets discussed
in the definition for this example.

x 1 2 3 4

f(x) 9 4 9 4

We will mainly be considering functions f : Rn → Rm, they send vectors v in Rn to vectors
f(v) in Rm.

Example. For the matrix

[
3 −7 1
4 2 −1

]
, consider the function TA : R3 → R2 given by

TA(x) = Ax. This function sends vectors from space to vectors in a plane. Write the formula

for TA

 x1

x2

x3

.

Example. Consider f : R2 → R2, f(v) = the vector obtained by rotating v by 3π
4
. Then

we have seen that

f(v) =

[
−

√
2
2

−
√
2
2√

2
2

−
√
2
2

]
v

Ch.2-9



Definition. Let A be an m× n matrix. The function TA : Rn → Rm given by TA(x) = Ax
is called a matrix transformation induced by A.

In this course we will mainly be considering functions T : Rn → Rm that are matrix
transformations.

Example. What does the
matrix transformation induced
by the matrix below do? 1 0 0

0 0 0
0 0 1



Example. What does the
matrix transformation induced
by the matrix below do?[
1 k
0 1

]
(shear transformation)

In this course we will mainly be considering functions T : Rn → Rm that have a special
property.

Definition. A function T : Rn → Rm is called a linear transformation or just linear if, for
all vectors u, v in Rn and all scalars c, we have:

(i) T (u+ v) = T (u) + T (v) (T preserves vector addition)

(ii) T (cu) = cT (u) (T preserves scalar multiplication)

Example. This is easy: find an example of a function T : R → R which:
a) fails to preserve vector addition
b) fails to preserve scalar multiplication

Example (Theorem 2.7). Show that every matrix transformation TA : Rn → Rm is a
linear transformation.
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Theorem 2.8. For all vectors u,v in Rn and all scalars a, b, every linear transformation
T : Rn → Rm satisfies:

(a) T (0) = 0

(b) T (−u) = −T (u)

(c) T (u− v) = T (u)− T (v)

(d) T (au+ bv) = aT (u) + bT (v)

(e) T (a1u1 + . . . akuk) = a1T (u1) + · · · + akT (uk), for all vectors u1, . . .uk in Rn and all
scalars a1, . . . , ak.

Proof.

Theorem 2.9. Let T : Rn → Rm be a linear transformation. Then T is a matrix transfor-
mation TA whose matrix

A =
[
T (e1) T (e2) . . . T (ek)

]
consists of columns that are images under T of standard basis vectors e1, . . . , en of Rn.

Proof.

Definition. The matrix

A =
[
T (e1) T (e2) . . . T (ek)

]
is called the standard matrix of T . (It has the property that T (v) = Av for every v in Rn.
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2.8 Composition, Invertibility

of Linear Transformations

Definition. Let X and Y be sets. A function f from X to Y is said to be:

— onto, if the range of f equals Y .

— one-to-one, if it sends distinct elements to distinct images, in other words, if x1 ̸= x2,
then f(x1) ̸= f(x2), for all x1, x2 in X.

— (equivalently) onto, if for every y in Y there is an x in X so that f(x) = y.

— (equivalently) one-to-one, if f(x1) = f(x2), then x1 = x2, for all x1, x2 in X.

Example. Consider functions with codomain {4, 7, 9, 11} given by the tables below. Which
ones are a) onto? b) one-to-one ?

x 1 2 3

f(x) 9 4 7

x 1 2 3 4

g(x) 9 7 11 4

x 1 2 3 4

h(x) 9 9 11 4

x 1 2 3 4 5

k(x) 9 4 9 11 7

Now consider linear transformations T : Rn → Rm (that is, matrix transformations).

Proposition. The range of a linear transformation T is the span of the columns of its
standard matrix.

Example. Is the linear transformation T : R2 → R3 onto?

T

([
x1

x2

])
=

 2x1 + x2

−x1 + 3x2

5x1 − x2


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Theorem 2.10. Let f : Rn → Rm be a linear transformation with standard matrix A. The
following statements are equivalent:

(a) T is onto, that is, range of T is Rm.

(b) The columns of A span Rm.

(c) rankA = m

(d) For every b in Rm, the equation Ax = b has a solution.

Proof.

Definition. Let T : Rn → Rm be a linear transformation. The null space of T is the set of
all vectors v in Rn such that T (v) = 0. Note that 0 is always in the null space of T .

Proposition. A linear transformation is one-to-one if and only if its null space contains
only 0.

Proof.

Example. Is the linear transformation T : R2 → R3 one-to-one?

T

([
x1

x2

])
=

 2x1 + x2

−x1 + 3x2

5x1 − x2


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Theorem 2.11. Let f : Rn → Rm be a linear transformation with standard matrix A. The
following statements are equivalent:

(a) T is one-to-one.

(b) The null space of T consists only of the zero vector.

(c) The columns of A are linearly independent.

(d) rankA = n

(d) The only solution of the equation Ax = 0 is 0.

Proof.

Definition. Let f : X → Y and g : Y → Z be functions. The composition of functions f
and g is defined to be the function g ◦ f : X → Z given by

(g ◦ f)(x) = g(f(x)), for every x in X

Example. Consider functions f : {1, 2, 3, 4} → {4, 7, 9} and g : {4, 7, 9} → {15, 17, 20, 24}
given by the tables. Determine the function g ◦ f .

x 1 2 3 4

f(x) 7 4 9 4

x 4 7 9

g(x) 20 15 24

x 1 2 3 4

(g ◦ f)(x)

Example. Let TA : Rn → Rm and TB : Rm → Rp be linear transformations induced by
matrices A and B. Show that TB ◦ TA = TBA.

For this reason, when writing compositions of linear transformations, we usually omit “◦”,
so TB ◦ TA is written as TBTA, thus, the above example reads as TBTA = TBA.

Theorem 2.12. Let T : Rn → Rm and U : Rm → Rp be linear transformations with
standard matrices A and B, respectively. Then UT : Rn → Rp is also linear and its
standard matrix is BA.
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Example. Compute the composite UT of the linear transformations T : R2 → R3 and
U : R3 → R2 directly and by using their standard matrices.

T

([
x1

x2

])
=

 2x1 + x2

−x1 + 3x2

5x1 − x2

 U

 x1

x2

x3

 =

[
3x1 − x2 + 2x3

−3x1 + 4x2 + x3

]

Definition. A function f : X → Y is said to be invertible if there is a function g : Y → X
such that g ◦f = idX and f ◦g = idY , where idX and idY are identity functions on X and Y .

Note. It is easy to see that any invertible function f : X → Y has to be onto and one-to-one.
If f is invertible, the function g from the definition is unique and is called the inverse of f ,
denoted f−1. It is given by:

f−1(y) = the unique x that f sends to y, for every y in Y

Theorem 2.13. Let T : Rn → Rn be a linear transformations with standard matrix A.
Then T is invertible if and only A is invertible, in which case T−1 = TA−1 . Note this also
implies that T−1 is linear and its standard matrix is A−1.

Proof.
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Table summarizing essential takeaways for a linear tranformation T : Rn → Rm with m× n
standard matrix A.

Property of T rank of A Solutions of Ax = b Columns of A

T is onto rankA = m
at least one
for every b in Rm span Rm

T is one-to-one rankA = n
at most one
for every b in Rm

are linearly
independent

T is invertible rankA = m = n
unique solution
for every b in Rm

span Rm and
are linearly
independent
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