
Matrix Theory — Lecture notes
MAT 335, Fall 2022 — D. Ivanšić 1.1 Matrices and Vectors

A matrix is a principal object of our study — it is simply a rectangular array of numbers.

Definition. An m× n (“m by n”) matrix is a rectangular array of numbers (scalars) that
has m rows and n columns. The scalar in the i-th row and j-th column is typically denoted
aij and called the (i, j)-entry of the matrix. For example:

[
3 4 −1 5
7 −3 0 1

]  √2 7

−3 −
√
3

−1 −
√
2

  4
−7
3

 [
−5 2 −6

]  4 7 0
0 1 −5
−1 3 2



Or, in general,


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


Two matrices of the same dimensions m× n can be added, subtracted and multiplied by a
scalar, all done component-wise.

Example. Let A =

[
2 4 5
−4 −3 0

]
and B =

[
3 −1 8
7 0 1

]
. Compute A+B, 2A, 4A− 3B.

Another operation on matrices is transposing, which can be imagined as flipping the matrix
over its main diagonal (the downwards-going one). The transpose of the m× n matrix A is
the n×m matrix AT .

Rows of A become columns in AT

Columns of A become rows of AT

The (i, j)-element of A becomes the (j, i)-element of AT

For example,

If A =

[
2 4 5
−4 −3 0

]
, then AT =

 2 −4
4 −3
5 0

 .
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A special matrix is the zero matrix, whose entries are all zeroes. It will be denoted by 0, just
like the scalar (context tells us if it is a matrix or a scalar).

Theorems 1.1, 1.2: Properties of matrix addition, scalar multiplication and the
transpose. Let A, B and C be m × n matrices, s and t scalars. Let −A denote (−1)A.
Then

A+B = B + A A+ 0 = A s(tA) = (st)A
(A+B) + C = A+ (B + C) A+ (−A) = 0 s(A+B) = sA+ SB

(commutativity and associativity) (s+ t)A = sA+ tA

(A+B)T = AT +BT (sA)T = sAT (AT )T = A

Definition. A vector is a matrix with ei-
ther exactly one column (column vector),
or one row (row vector), for example 4

−7
3

 or
[
−5 2 −6

]
.

The components of the vector are its en-
tries. If a vector has n components, then
the set of all vectors is denoted by Rn. We
usually work with column vectors.
Vectors can be visualized as arrows in the
plane or in space, for example

R3 ←→ points in space

Note. The properties of matrix operations apply to vectors as well. Actually, when you
first studied vectors, you were given the same list of properties as the ones above (without
the transpose properties). The reason that the properties first introduced for vectors hold
for matrices is that an m × n matrix can be thought of as list of mn numbers — that is, a
vector with mn components — that was arranged in a rectangular array. So, for purposes
of addition and multiplication by scalar, matrices act like vectors. The usefulness of putting
those mn numbers in rectangular arrays will become clear as we progress through the course.

It is often convenient to think of an m × n matrix as a collection of n column vectors with
m components.

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 =

 | | . . . |
a1 a2 . . . an

| | . . . |

 =
[
a1 a2 . . . an

]
where aj =


a1j
a2j
...

amj
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Geometry of vectors

Geometrically, adding vectors can be done via:

parallelogram law triangle law scalar multiplication

Multiplication by a scalar is essentially lenghtening the vector by a factor, reversing direction
if scalar is negative.

In this course, we will mainly be thinking of vectors as all emanating from the origin — the
parallelogram law then applies to any two vectors.

In general, a vector can be represented by an arrow with any starting point. Then, two such
arrows are considered the same if they have the same direction (are parallel and point the
same way) and magnitude. Alternatively, if there is a coordinate system set up in space, the
arrows are the same if, for both arrows, the terminal point is reached from the starting point
by going a1 units in the direction of the x-axis, a2 units in the direction of the y axis, and
a3 units in direction of the z axis. In this case, a1, a2 and a3 are components of the vector.
Under this interpretation, a vector is a “forest” of arrows of same direction and magnitude,
while an arrow is a “tree” in this forest, said to represent the vector.
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1.2 Linear Combinations and

Matrix-Vector Products

Definition. A linear combination of vectors u1,u2, . . . ,un is any vector of the form

c1u1 + c2u2 + · · ·+ cnun,

where c1, c2, . . . , cn are scalars (called coefficients of the linear combination).

Identify all possible linear combinations of the vectors shown in space.

Example.

Is the vector

 −43
0

 a linear combination of

 1
0
3

 and

 2
−1
2

?
Is the vector

 1
1
1

 a linear combination of

 1
0
3

 and

 2
−1
2

?
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Example.

Is the vector

 7
2
5

 a linear combination of

 1
0
3

,
 2
−1
2

 and

 1
1
1

?
Is the vector

 3
0
9

 a linear combination of

 1
0
3

,
 2
−1
2

 and

 0
1
4

?

Note. Solving these problems boiled down to solving systems of linear equations.
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Definition. The standard basis vectors of Rn is the collection of n vectors

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
1
...
1


The n× n matrix

In =
[
e1 . . . en

]
is called the
identity matrix

In =


1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1


For any vector v in Rn whose components are v1, v2, . . . , vn it is clear that

v = v1e1 + v2e2 + · · ·+ vnen,

in other words, every vector in Rn is a linear combination of the standard basis vectors.

Illustrating this for R3:

Definition of Matrix-Vector Multiplication. Let A =
[
a1 a2 . . . an

]
be an m ×

n matrix given with columns a1, a2, . . . an, and v be an n × 1 vector with components
v1, v2, . . . , vn. The product of matrix A and vector v is

Av = v1a1 + v2a2 + · · ·+ vnan

Alternatively, Av =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn




v1
v2
...
vn

 =


a11v1 + a12v2 + · · ·+ a1nvn
a21v1 + a22v2 + · · ·+ a2nvn

...
am1v1 + am2v2 + · · ·+ amnvn


In the first interpretation, Av is an m× 1 vector that is the linear combination of columns
of A with coefficients the components of v.

In the second interpretation, Av is an m× 1 vector whose components are dot products of
rows of A with the column v.

Example. Multiply.

[
3 0 −1 5
−7 1 4 −2

]
3
2
0
−4

 =
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Example. Find the components of the vector obtained by rotating the vector

[
x
y

]
by

angle θ around the origin.

Therefore, rotating the vector v =

[
x
y

]
by angle θ results in vector

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

The matrix Aθ shown is called a rotation matrix.

Rotate the vector

[
3
1

]
around the origin by angle π

3
.
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Example. Below is data on nutritional value of various foods per 100g serving. We can
use a matrix to represent this data, and we can use matrix-vector multiplication to find out
the nutritional value of a meal of x servings of chicken, y servings of rice and z servings of
lettuce contains.

Find the nutritional values for a meal with 2 servings of chicken, 1 servings of rice and 2
servings of lettuce.

chicken rice lettuce
energy (kcal) 149 359 17

fat (g) 6 1 0
protein (g) 24 7 1

carbohydrates (g) 0 80 3

Start by arranging the data in a matrix:
149 359 17
6 1 0
24 7 1
0 80 3



Theorems 1.3: Properties of matrix-vector multiplication. Let A, B be m × n
matrices, and u and v vectors in Rn, e1, . . . , en standard basis vectors for Rn, a1, . . . , an

columns of A, c a scalar. Then

A(u+ v) = Au+ Av Aej = aj, j = 1 . . . , n If Au = Bu
A(cu) = c(Au) = (cA)u A0 = 0 for every vector u in Rn

(A+B)u = Au+Bu 0v = 0 then A = B
Inv = v

Proof of some statements.
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1.3 Systems of

Linear Equations

Definition. A linear equation in variables x1, . . . , xn is an equation of form

a1x1 + a2x2 + · · ·+ anxn = b

where the real numbers a1, . . . , an are called coefficients and b is called the constant term.

Example. What do linear equations in two or three variables represent in R2 or R3?

Definition. A system of linear equations is a set of m linear equations in n variables (like
above). It can be written in form

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

A solution of a system of linear equations in variables x1, . . . , xn is the set of all vectors

(n-tuples)

 x1
...
xn

 that make all equations true.

Example. Use geometric interpretation to see how many solutions a system of equations in
two or three variables could have.
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To solve a system of equations in an organized way, at every step we transform the system
into an equivalent system, that is, a system of equations that has the same solutions as the
original one. The goal is to reach a system of equations for which the solution is clear. The
following operations result in an equivalent system:

1) interchange any two equations

2) multiply an equation by a nonzero scalar

3) add a multiple of one equation to another

The key reason why these operations result in equivalent systems is that they are reversible
using the same type of operations: if we transform system S into system T via an operation
of type 1, 2 or 3, then system T can be transformed into system S via an operation of the
same type.

Now, if x1, . . . , xn satisfy a system S, then x1, . . . , xn will satisfy the system T . Because S
is obtained from T also via an operation of type 1, 2 or 3, the same will hold: if x1, . . . , xn

satisfy the system T , then x1, . . . , xn satisfy the system S. This implies that systems S and
T have the same set of solutions.

Proof of equivalence via example. Consider the system below.
2x1 +3x2 −x3 = 0
x1 +x2 +3x3 = 4
5x1 +6x2 −10x3 = 12

Now, let’s solve this system.
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Note that a general system of equations

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

can be
written
as


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn




x1

x2
...
xn

 =


b1
b2
...
bm


Therefore, our system can be viewed as a matrix equation Ax = b, and we are to find all
vectors x that satisfy it. The matrix A is called the coefficient matrix of the system. By
adjoining column b to the matrix A on the right side, we get the augmented matrix of the
system, denoted

[
A b

]
.

We can associate an augmented matrix to every system of equations. It is easily seen that
if system T is obtained from system S by one of above operations 1,2 or 3 on the system,
the augmented matrix of system T is obtained from the augmented matrix of system S by
a similar operation performed on rows.

We have elementary row operations on a matrix:

1) interchange any two rows

2) multiply a row by a nonzero scalar

3) add a multiple of one row to another

By performing row operations we are essentially transforming a system of equations into an
equivalent system of equations with less writing.

Example. Solve the previous system using row operations on the augmented matrix.
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What form should an augmented matrix have so that “the solution is clear?” The same one
as when we solved the example above, which is, for example (∗ is any number) 1 0 0 ∗

0 1 0 ∗
0 0 1 ∗

 or

 1 0 ∗ ∗
0 1 0 ∗
0 0 0 0

 or

 0 1 ∗ 0 0 ∗
0 0 0 1 0 ∗
0 0 0 0 1 ∗


This form is called the reduced row echelon form.

Definition. A zero row of a matrix is one where all entries are 0, otherwise, the row is a
nonzero row. The leftmost nonzero entry in a row is called a leading entry. A matrix is in
row echelon form if

1) each nonzero row lies above every zero row

2) the leading entry of a nonzero row lies to the right of the leading entry of any preceding
row

3) if a column contains a leading entry, all the entries of the column below the leading
entry are 0

A matrix is in reduced row echelon form if it additionally satisfies

4) if a column contains a leading entry, all the other entries of the column are 0

5) the leading entry of each nonzero row is 1

Once the matrix is in reduced row echelon form, the solutions are easy to find.

Example. Solve systems whose augmented matrices are: 0 1 2 0 −4 3
0 0 0 1 6 −11
0 0 0 0 0 0



 1 0 0
0 1 0
0 0 1
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Theorem 1.4. Every matrix can be transformed into exactly one matrix in reduced row
echelon form via a sequence of elementary row operations.

The theorem says that for a given matrix, any sequence of elementary row operations that
ends with a matrix in reduced row echelon form gives the same matrix.

Procedure for Solving a System of Linear Equations.

1) Write the augmented matrix
[
A b

]
of the system.

2) Find the reduced row echelon form
[
R c

]
of

[
A b

]
3) If

[
R c

]
contains a row in which the only nonzero entry is in the last column, the

system Ax = b has no solution.
Otherwise, the system has at least one solution.
Write the system corresponding to

[
R c

]
, and solve the system for basic variables

(corresponding to columns with leading 1’s) in terms of the free variables (correspond-
ing to remaining columns other than the rightmost one) to get a general solution of
Ax = b.
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A system of equations is easy to solve when its augmented matrix is in reduced row echelon
form. Here we find out how to get any matrix into reduced row echelon form by row
operations.

The idea is to use a nonzero entry in a column — called a pivot position — to turn all entries
above and below it into zeroes via row operations (“eliminate” the entries). It is preferable
if the pivot position is a 1 (swap rows to achieve this).

We start in the leftmost nonzero column, choose a pivot position and bring it into the first
row if needed. Then eliminate all entries below it.

Once this is done, move down and to the right from the pivot position to find the next pivot
position and repeat eliminating all entries below the pivot position. In this stage, rows above
the current pivot position remain as they were — only the rows below are affected. Once
the pivot positions are exhausted, the matrix is in row echelon form, and the pivot positions
will be the leading entries in each row. This is the end of the forward pass of the algorithm.

The backward pass of the algorithm is to turn the leading entries in the rows into 1’s and
eliminate all the entries above them, as the ones below are already all zero. We start with
the rightmost (and lowest) leading entry and work upwards. When done, the matrix will be
in reduced row echelon form.

Example. Find the reduced row echelon form of the matrix. Write the solution of the
system, assuming the matrix was the augmented matrix of the system.
−2 −2 10 −7 3 9
0 1 2 −1 0 1
1 3 −1 2 2 −1
−2 0 14 −9 3 11
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Example. Solve the system.
2u −8v +14w +12z = 6
3u −10v +26w +7z = 22

−3v −8w +17z = −13
u −3v +10w +z = 7
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Definition. The rank of an m × n matrix A,
denoted rankA, is the number of nonzero rows in
the reduced row echelon form of A, which is same
as the number of pivot columns. The nullity of
A, denoted nullityA, is the number of columns of
A in the reduced row echelon form that do not
contain leading entries, same as the number of
nonpivot columns. Note that

rankA+ nullityA = n

Example. Go back to the previous two examples
and find the rank and nullity of the augmented
matrices.

Note. An n× n matrix A has rank n if and only
if its reduced row echelon form is In.

Definition. A system of equations is called consistent if it has at least one solution, otherwise
it is inconsistent.

Consider the system Ax = b and note that the reduced row echelon form of
[
A b

]
is

the reduced row echelon form of A with an additional column. When the additional column
produces an additional nonzero row, the system is inconsistent, otherwise it is consistent.

In other words, we see that the system is inconsistent if and only if

rank
[
A b

]
> rankA.

Now assume the system Ax = b is consistent. Going back to how we were able to solve the
system once it was in reduced row echelon form, considering just the reduced row echelon
form of A, we see:

1) rankA is equal to the number of basic variables in the general solution

2) nullityA is equal to the number of free variables in the general solution, so the system
has infinitely many solutions if and only if nullityA > 0.

Theorem 1.5. The following conditions are equivalent.

a) The system Ax = b is consistent.

b) The vector b is a linear combination of the columns of A.

c) The reduced row echelon form of A has no row of form
[
0 . . . 0 d

]
, where d ̸= 0.

Ch.1-16



Matrix Theory — Lecture notes
MAT 335, Fall 2022 — D. Ivanšić

1.6 The Span

of a Set of Vectors

Definition. For a nonempty set of vectors S = {u1, . . . ,uk} of vectors in Rn we define the
span of S to be the set of all linear combinations of u1, . . . ,uk. It is denoted by SpanS or
Span{u1, . . . ,uk}.

Example. Let a,b, c be three nonzero vectors in R3. Describe the possibilities for Span{a},
Span{a,b}, Span{a,b, c}.

Example. Do the vectors

 4
2
3

,
 −1−1

3

,
 11

7
−3

, and
 2
−2
9

 span R3?
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The problem illustrates the following theorem.

Theorem 1.6. The following statements about an m× n matrix A are equivalent:

(a) The span of columns of A is Rm.

(b) The equation Ax = b has at least one solution for each b in Rm.

(c) The rank of A is m, the number of rows of A.

(d) The reduced row echelon form of A has no zero rows.

(e) There is a leading 1 in each row of the reduced row echelon form.

Proof. a⇐⇒ b, c⇐⇒ d⇐⇒ e clear, show b⇐⇒ c

For the example above, we found out that the four vectors span R3. We know that, in
general, three vectors are enough to span R3. Can we drop one of the four in the example?

Theorem 1.6. Let S = {u1, . . . ,uk} be a set of vectors in Rn, and v a vector in Rn. Then
Span{u1, . . . ,uk,v} = Span{u1, . . . ,uk} if and only if v is in Span{u1, . . . ,uk}.

This means that if one of the vectors is a linear combination of the others, it can be dropped
from the spanning set.

Proof.
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Example. In the example above, which vector can be dropped from the spanning set,
because it is a linear combination of the other vectors?
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1.7 Linear Independence

and Linear Dependence

The example at the end of section 1.6 is instructive for determining when one vector in a set
is a linear combination of the others. We tried to solve the system

x1u1 + x2u2 + x3u3 + x4u4 = 0

and the existence of a solution which was not all zeroes allowed us to express some vectors
in terms of the others.

Definition. A set of vectors {u1, . . . ,uk} is called linearly independent if the only scalars
c1, . . . , ck that satisfy

c1u1 + c2u2 + · · ·+ ckuk = 0

are all zero (that is, c1 = c2 = · · · = ck = 0)

A set of vectors {u1, . . . ,uk} is linearly dependent if it is not linearly independent, which
means that there are scalars c1, . . . , ck, of which at least one is not zero, so that

c1u1 + c2u2 + · · ·+ ckuk = 0.

Example. Any set of vectors that contains a zero vector is linearly dependent.

Note. A set of vectors is linearly dependent if and only if one of them is a linear combination
of the others. Therefore, in a linearly independent set, no vector is a linear combination of
the others.

Note. A set of two vectors is linearly dependent if and only if one is a multiple of the other.

Note the language: One does not say that:

— a vector is linearly independent of some other vectors, or

— a vector is linearly dependent on some other vectors,

because linear (in)dependence is not a property of a single vector, but of a set of vectors.

To capture what may have been attempted in the above two statements, one would say

— a vector is not a linear combination of some other vectors, or

— a vector is a linear combination of some other vectors.
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Example. Are the following sets of vectors linearly independent?

a)



−1
1
3
2

 ,


1
0
5
3

 ,


−4
−1
−1
2


 b)


 0

1
2

 ,

 1
1
3

 ,

 4
7
1

 ,

 3
3
3

 ,

 −21
2



Figuring whether vectors are linearly independent boils down to solving a system of type
Ax = 0, which comes up often.

Definition. The system of equations Ax = b is called homogeneous when b = 0.

Note. A homogeneous system of equations always has at least one solution — all zeroes.
The question usually is whether it has only one or infinitely many solutions.

The solution set of a homogeneous system is the span of a finite set of vectors. If the
solution was obtained using Gauss elimination, the vectors in the spanning set are linearly
independent.
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Theorem 1.8. The following statements about an m× n matrix A are equivalent:

(a) The columns of A are linearly independent.

(b) The equation Ax = b has at most one solution for each b in Rm.

(c) The nullity of A is zero.

(d) The rank of A is n, the number of columns of A.

(e) The reduced row echelon form of A has the first n standard basis vectors or Rm as its
columns.

(f) The only solution of Ax = 0 is 0.

(g) There is a leading 1 in each column of the reduced row echelon form.

Proof. a⇐⇒ f ⇐⇒ g clear, show b =⇒ c =⇒ d =⇒ e =⇒ f =⇒ b

Note. A subset of Rm containing more than m vectors is linearly dependent.

Theorem 1.9. Vectors {u1, . . . ,uk} in Rn are linearly dependent if and only if u1 = 0 or
there is an i ≥ 2 such that ui is a linear combination of the preceding vectors u1, . . . ,ui−1

(Thus, some vector in the set can be written as a linear combination of its predecessors, and
not just other vectors in the set.)
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Proof.

Table summarizing essential takeaways for an m× n matrix A.

rank of A Solutions of Ax = b Columns of A Reduced row echelon form of A

rankA = m
at least one
for every b in Rm span Rm has a leading 1 in every row

rankA = n
nullityA = 0

at most one
for every b in Rm

are linearly
independent

has a leading 1 in every column

Geometric interpretation of the solution of a linear system. For a consistent system
Ax = b, the set of solutions can be described as

(general solution of Ax = b) = (particular solution of Ax = b)+(general solution of Ax = 0)

Geometrically, it is a shift of the span of some vectors.

Example. Write the solution of the system whose augmented matrix is below.
−2 −2 10 −7 3 9
0 1 2 −1 0 1
1 3 −1 2 2 −1
−2 0 14 −9 3 11


has reduced row echelon form 1 0 −7 0 −33 −19

0 1 2 0 7 4
0 0 0 1 7 3
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