Calculus 1 - Exam 3

MAT 250, Fall 2019 - D. Ivanšić

Name: \qquad

Differentiate and simplify where appropriate:

1. $(5 \mathrm{pts}) \frac{d}{d x} \ln \left(3 x^{2}-5 x+2\right)=$
2. $(6 \mathrm{pts}) \frac{d}{d x}\left(x^{\frac{3}{2}}-4 x^{\frac{1}{2}}\right) e^{x}=$
3. $(6 \mathrm{pts}) \frac{d}{d u} \frac{\ln u}{u^{2}}=$
4. $(7 \mathrm{pts}) \frac{d}{d x} \arctan \sqrt{x^{2}-1}=$
5. (7pts) $\frac{d}{d \theta} \log _{4} \frac{1-\sec \theta}{1+\sec \theta}=$
6. (10pts) Use logarithmic differentiation to find the derivative of $y=\left(x^{2}-1\right)^{x^{2}}$.

Find the limits algebraically. Graphs of basic functions will help, as will L'Hospital's rule, where appropriate.
7. (2pts) $\lim _{x \rightarrow 0+} \log _{3} x=$
8. (7pts) $\lim _{x \rightarrow \infty} \arccos \left(\frac{x+4}{x^{2}-3 x+12}\right)=$
9. (6pts) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=$
10. (9pts) $\lim _{x \rightarrow \infty} \frac{x^{\frac{3}{2}}}{1.1^{x}}=$
11. (8pts) $\lim _{x \rightarrow 0}(1-2 x)^{\frac{1}{\sin x}}=$
12. (10pts) Let $f(x)=\sqrt{x}$.
a) Write the linearization of $f(x)$ at $a=16$.
b) Use the linearization to estimate $\sqrt{17}$ and compare to the calculator value of 4.123106.
13. (10pts) A cube is measured to have side length of 5 centimeters, with maximum error 2 millimeters. Use differentials to estimate the maximum possible error, the relative error and the percentage error when computing the volume of the cube.
14. (7pts) The table of values of $f(x)$ and $f^{\prime}(x)$ is given at right. Use the theorem on derivatives of inverses to find $\left(f^{-1}\right)^{\prime}(1)$.

x	1	2	3	4
$f(x)$	4	1	0	-1
$f^{\prime}(x)$	-2	-3	-4	-1

Bonus. (10pts) The function $f(x)=x^{2}+4 x-7$ is one-to-one on the domain $(-\infty,-2$].
a) Use either the quadratic formula or completion of squares to find $f^{-1}(x)$.
b) Use the theorem on derivatives on inverses to find $\left(f^{-1}\right)^{\prime}(x)$ and compare it with the derivative that you get from the formula you find in a).

