Calculus 1 — Exam 3 MAT 250, Fall 2019 — D. Ivanšić

Name:

Show all your work!

Differentiate and simplify where appropriate:

1. (5pts)
$$\frac{d}{dx} \ln(3x^2 - 5x + 2) =$$

2. (6pts)
$$\frac{d}{dx}(x^{\frac{3}{2}}-4x^{\frac{1}{2}})e^x =$$

3. (6pts)
$$\frac{d}{du} \frac{\ln u}{u^2} =$$

4. (7pts)
$$\frac{d}{dx} \arctan \sqrt{x^2 - 1} =$$

5. (7pts)
$$\frac{d}{d\theta} \log_4 \frac{1 - \sec \theta}{1 + \sec \theta} =$$

6. (10pts) Use logarithmic differentiation to find the derivative of $y = (x^2 - 1)^{x^2}$.

Find the limits algebraically. Graphs of basic functions will help, as will L'Hospital's rule, where appropriate.

7. (2pts)
$$\lim_{x \to 0+} \log_3 x =$$

8. (7pts)
$$\lim_{x \to \infty} \arccos\left(\frac{x+4}{x^2-3x+12}\right) =$$

9. (6pts)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} =$$

10. (9pts)
$$\lim_{x \to \infty} \frac{x^{\frac{3}{2}}}{1.1^x} =$$

11. (8pts)
$$\lim_{x \to 0} (1 - 2x)^{\frac{1}{\sin x}} =$$

- **12.** (10pts) Let $f(x) = \sqrt{x}$.
- a) Write the linearization of f(x) at a = 16.
- b) Use the linearization to estimate $\sqrt{17}$ and compare to the calculator value of 4.123106.

13. (10pts) A cube is measured to have side length of 5 centimeters, with maximum error 2 millimeters. Use differentials to estimate the maximum possible error, the relative error and the percentage error when computing the volume of the cube.

14	. (7pts	s) The	e table	of valu	ues	of $f(x)$ a	nd f	'(x) is	given
at	right.	Use t	he the	orem	on	derivativ	es of	invers	es to
fin	d (f^{-1}))'(1).							

x	1	2	3	4
f(x)	4	1	0	-1
f'(x)	-2	-3	-4	-1

Bonus. (10pts) The function $f(x) = x^2 + 4x - 7$ is one-to-one on the domain $(-\infty, -2]$. a) Use either the quadratic formula or completion of squares to find $f^{-1}(x)$. b) Use the theorem on derivatives on inverses to find $(f^{-1})'(x)$ and compare it with the derivative that you get from the formula you find in a).