Calculus 1 - Exam 2

MAT 250, Fall 2019 - D. Ivanšić \qquad
Differentiate and simplify where appropriate:

1. $(6 \mathrm{pts}) \frac{d}{d x}\left(3 x^{7}-b^{3}+\sqrt[5]{x^{8}}-\frac{7}{x^{6}}\right)=$
2. $(6 \mathrm{pts}) \frac{d}{d x}(x \sqrt{x+3})=$
3. $(6 \mathrm{pts}) \frac{d}{d t} \frac{t^{2}-1}{2 t+5}=$
4. $(7 \mathrm{pts}) \frac{d}{d \theta} \frac{\sin \theta}{\cos ^{3} \theta}=$
5. $(6 \mathrm{pts}) \frac{d}{d x} \sqrt[3]{\cos \left(x^{2}-7\right)}=$
6. (6pts) The position function of an object is given by $s(t)=t^{2}-\sin (2 t)$. Write the velocity and acceleration functions for this motion.
7. (10pts) The graph of the function $f(x)$ is shown at right.
a) Where is $f(x)$ not differentiable? Why?
b) Use the graph of $f(x)$ to draw an accurate graph of $f^{\prime}(x)$.

8. (13pts) Let $f(x)=\sqrt{x}$, and $x>0$.
a) Use the limit definition of the derivative to find the derivative of the function.
b) Check your answer by taking the derivative of f using differentiation rules.
c) Write the equation of the tangent line to the curve $y=f(x)$ at point $(9,3)$.
9. (10pts) Let $g(x)=\frac{f(x)}{x^{2}}$ and $h(x)=f(x \cdot f(x))$.
a) Find the general expressions for $g^{\prime}(x)$ and $h^{\prime}(x)$.
b) Use the table of values at right to find $g^{\prime}(3)$ and $h^{\prime}(2)$.

x	1	2	3	4
$f(x)$	-1	2	3	-5
$f^{\prime}(x)$	-2	3	4	-1

10. (8pts) Find the point (x-coordinates only) on the curve $y=2 x^{3}-3 x^{2}-31 x+7$ where the tangent line is parallel to the line $y=5 x-17$.
11. (10pts) Use implicit differentiation to find y^{\prime}.
$\sqrt{x y}=x^{3}+y^{3}-\tan y$
12. (12pts) A 9-foot ladder is sliding down the wall against which it is leaning. When the bottom of the ladder is 4 feet from the base of the wall, it is moving away from the wall at speed $\frac{1}{3}$ feet per second. How fast is the top of the ladder dropping at that moment?

Bonus. (10pts) Find points on the circle $x^{2}+y^{2}=20$ where the tangent line is parallel to the line $6 x-2 y=4$. Draw the circle, the given line and the parallel tangent line(s). (Hint: implicit differentiation is a little easier.)

