Calculus 1 — Exam 2 MAT 250, Fall 2019 — D. Ivanšić

Name:

Show all your work!

Differentiate and simplify where appropriate:

1. (6pts)
$$\frac{d}{dx}\left(3x^7 - b^3 + \sqrt[5]{x^8} - \frac{7}{x^6}\right) =$$

2. (6pts)
$$\frac{d}{dx} \left(x\sqrt{x+3} \right) =$$

3. (6pts)
$$\frac{d}{dt} \frac{t^2 - 1}{2t + 5} =$$

4. (7pts)
$$\frac{d}{d\theta} \frac{\sin \theta}{\cos^3 \theta} =$$

5. (6pts)
$$\frac{d}{dx} \sqrt[3]{\cos(x^2 - 7)} =$$

6. (6pts) The position function of an object is given by $s(t) = t^2 - \sin(2t)$. Write the velocity and acceleration functions for this motion.

7. (10pts) The graph of the function f(x) is shown at right.

a) Where is f(x) not differentiable? Why?

b) Use the graph of f(x) to draw an accurate graph of f'(x).

- 8. (13pts) Let $f(x) = \sqrt{x}$, and x > 0.
- a) Use the limit definition of the derivative to find the derivative of the function.
- b) Check your answer by taking the derivative of f using differentiation rules.
- c) Write the equation of the tangent line to the curve y = f(x) at point (9,3).

Q (10 pts) Let $q(x) = f(x)$ and $h(x) = f(x, f(x))$	x	1	2	3	4
a) Find the general expressions for $q'(x)$ and $h'(x)$.	f(x)	-1	2	3	-5
b) Use the table of values at right to find $g'(3)$ and $h'(2)$.	f'(x)	-2	3	4	-1

10. (8pts) Find the point (x-coordinates only) on the curve $y = 2x^3 - 3x^2 - 31x + 7$ where the tangent line is parallel to the line y = 5x - 17.

11. (10pts) Use implicit differentiation to find y'.

 $\sqrt{xy} = x^3 + y^3 - \tan y$

12. (12pts) A 9-foot ladder is sliding down the wall against which it is leaning. When the bottom of the ladder is 4 feet from the base of the wall, it is moving away from the wall at speed $\frac{1}{3}$ feet per second. How fast is the top of the ladder dropping at that moment?

Bonus. (10pts) Find points on the circle $x^2 + y^2 = 20$ where the tangent line is parallel to the line 6x - 2y = 4. Draw the circle, the given line and the parallel tangent line(s). (*Hint: implicit differentiation is a little easier.*)