Calculus 1 - Exam 1 MAT 250, Fall 2019 - D. Ivanšić

Show all your work!

1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist.
$\lim _{x \rightarrow-2+} f(x)=$
$\lim _{x \rightarrow-2^{-}} f(x)=$
$\lim _{x \rightarrow-2} f(x)=$
$\lim _{x \rightarrow-\infty} f(x)=$
$\lim _{x \rightarrow 6} f(x)=$
$\lim _{x \rightarrow 3} f(x)=$
List points in domain of f where f is not continuous and justify why it is not continuous at those points.

2. (6pts) Let $\lim _{x \rightarrow 5} f(x)=3$ and $\lim _{x \rightarrow 5} g(x)=1$. Use limit laws to find the limit below and show each step.
$\lim _{x \rightarrow 5} \frac{x f(x)-9 g(x)}{f(x)^{2}-3}=$
3. (10pts) Find $\lim _{x \rightarrow 0} x^{4} \cdot\left(1+\sin \left(\frac{1}{x}\right)\right)^{2}$. Use the theorem that rhymes with insects that you might find on dogs and cats.

Find the following limits algebraically. Do not use the calculator.
4. $(7 \mathrm{pts}) \lim _{x \rightarrow \infty} \frac{x^{2}-5 x+7}{x+4}=$
5. (5pts) $\lim _{x \rightarrow 7} \frac{x^{2}-6 x-7}{x^{2}-11 x+28}=$
6. $(7 \mathrm{pts}) \lim _{x \rightarrow 5} \frac{x^{2}-25}{\sqrt{x}-\sqrt{5}}=$
7. (6pts) $\lim _{x \rightarrow-3^{-}} \frac{x}{x+3}=$
8. (7pts) $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{x-1}-\frac{2}{x^{2}-1}\right)=$
9. (8pts) The equation $x^{3}-x^{2}+x=\sqrt{x}+1$ is given. Use the Intermediate Value Theorem to show it has a solution in the interval $(0,4)$.
10. (8pts) Explain in an intuitive way why the Intermediate Value Theorem is true on this example: Let f be a continuous function defined on the interval $[2,5]$, and let $f(2)=-1$ and $f(5)=4$. Justify graphically why there has to be a number c in the interval $(2,5)$ so that $f(c)=3$. (You need a picture and a nice sentence.)
11. (10pts) Consider the limit $\lim _{x \rightarrow 2} \frac{2^{x}-4}{x-2}$. Use your calculator (don't forget parentheses) to estimate this limit with accuracy 3 decimal points. Write a table of values that will support your answer.

x	$\frac{2^{x}-4}{x-2}$

x	$\frac{2^{x}-4}{x-2}$

12. (10pts) Is the function defined below continuous? Justify.
$f(x)= \begin{cases}\frac{\sin (2 x-6)}{x-3}, & \text { if } x \neq 3 \\ 1, & \text { if } x=3 .\end{cases}$

Bonus. (10pts) Show by example that the conclusion of the Intermediate Value Theorem is not true if the function is not continuous. Draw a function defined on the interval $[2,5]$ for which $f(2)=-1$ and $f(5)=4$. but there is no number c in the interval $(2,5)$ so that $f(c)=3$.

