3.1 Exponential Functions

Recall that the function $f(x) = a^x$, a > 0, $a \neq 1$ is called an exponential function.

Graph:

From the graphs we can see the most important facts about exponential functions.

Continuity:

$$Domain = Range =$$

$$\lim_{x \to \infty} a^x = \lim_{x \to -\infty} a^x =$$

Using above facts, we can find limits involving a^x :

Example.
$$\lim_{x\to 3} 5^{\frac{x^2-4x+3}{x-3}} =$$

Example.
$$\lim_{x \to 4+} e^{\frac{2}{8-2x}} =$$

Example.
$$\lim_{x\to\infty} \frac{3^x - 1}{3^{2x} + 5 \cdot 3^x - 3} =$$

The number e can be defined in several ways, here are two:

1)
$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} \approx$$

$\underline{}$	$(1+x)^{\frac{1}{x}}$
0.1	
0.01	
0.001	
10^{-4}	
10^{-5}	
10^{-6}	

2) Let m_a = slope of tangent line to graph of $y = a^x$ at x = 0. It can be numerically found that

$$m_2 < 1 \text{ and } m_3 > 1$$

Since m_a varies continuously with a, by the Intermediate Value Theorem there is a number a such that $m_a = 1$.

In this approach, we can define e as the number such that the graph of $y = e^x$ has a tangent line at x = 0 whose slope is 1.

3.2 Inverse Functions and Logarithms

Definition. A function is *one-to-one* if it sends different x's to different y's, that is

if
$$x_1 \neq x_2$$
, then $f(x_1) \neq f(x_2)$

In other words, it never happens that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$. Thus, no two points on the graph with different x-coordinates have the same y-coordinate. This is the idea of the:

Horizontal line test. A function is one-to-one if and only if no horizontal line intersects it more than once.

Example. Are the following graphs of one-to-one functions?

One-to-one functions are important because they are the only functions that have inverses: For every y in the range of f, we can define:

$$f^{-1}(y) =$$
 the x such that $f(x) = y$

Example. The function $f(x) = x^2$ is not one-to-one, but we have learned that its inverse is \sqrt{x} . What gives?

In general, functions that are not one-to-one, like $\sqrt{}$, sin, cos, tan,... are turned into one-to-one functions in the same way, by restricting the domain.

Inverse functions satisfy: $f^{-1}(f(x)) = x$ $f(f^{-1}(x)) = x$

The graph of f^{-1} is the reflection of the graph of f in the line y = x.

How to find the derivative of f^{-1} :

Theorem. If f is a one-to-one differentiable function then its inverse f^{-1} is differentiable, and

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$

Example. Use the theorem to find the derivative of $\sqrt[3]{x}$.

Example. Let $f(x) = 2x + \cos x$. Use the theorem to find $(f^{-1})'(1)$.

Definition. The exponential function $f(x) = a^x$ is one-to-one, so has an inverse called the logarithmic function: $f^{-1}(x) = \log_a x$.

Note. Think of $\log_a x$ as the answer to the question $a^? = x$, in other words,

$$y = \log_a x$$
 is the same as saying $a^y = x$

Properties of logarithmic functions

$$\log_a a^x = x \qquad \qquad a^{\log_a x} = x$$

are just
$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$ for $f(x) = a^x$ and $f^{-1}(x) = \log_a x$.

Property	Related exponential property	
$\log_a(xy) = \log_a x + \log_a y$ $\log_a \frac{x}{y} = \log_a x - \log_a y$	$a^{u+v} = a^u \cdot a^v$ $a^{u-v} = \frac{a^u}{a^v}$	Change of base formula: $\log_b x = \frac{\log_a x}{\log_a b}$
$\log_a x^r = r \log_a M$	$(a^u)^v = a^{uv}$	

Special bases:
$$a=e$$
, we write $\log_e x = \ln x$
 $a=10$, we write $\log_{10} x = \log x$

From the graph of a^x , a > 1, we get the graph of $\log_a x$ and can see all the important facts about it:

Domain =

Range =

$$\lim_{x \to \infty} \log_a x =$$

$$\lim_{x \to 0+} \log_a x =$$

Example. $\lim_{x\to 0+} \log_2(\sin x) =$

3.3 Derivatives of Exponential and Logarithmic Functions

Derivative of the exponential function $f(x) = a^x$

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx} a^x = \ln a \cdot a^x$$

Example.
$$\frac{d}{dx}(\sqrt{x}e^x) =$$

Example.
$$\frac{d}{dx}e^{\cos x} =$$

Example.
$$\frac{d}{dx}(x^2 + 3x)2^{4x} =$$

Example.
$$\frac{d}{dx} \frac{x}{e^x} =$$

Derivative of the logarithmic function $f(x) = \log_a x$

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

$$\frac{d}{dx}\ln x = \frac{1}{x} \qquad \qquad \frac{d}{dx}\log_a x = \frac{1}{x\ln a}$$

Example.
$$\frac{d}{dx} \ln \sqrt{x} =$$

Example.
$$\frac{d}{dx} \ln \left(\frac{x+1}{x-1} \right) =$$

Example.
$$\frac{d}{dx} \ln(\cos x) =$$

Example.
$$\frac{d}{dx}(x^2-7x)\log_3 x =$$

Example.
$$\frac{d}{dx} \log_5(\tan x) =$$

Example. Find the derivative of $y = \frac{e^{3x}\sqrt{x^2+1}}{(x^3+17)^4}$. This would be hard using the quotient rule (which would include a product rule for the derivative of the numerator), but we can simplify work using the trick of "logarithmic differentiation."

Example. Use logarithmic differentiation to find the derivative of $y = x^x$. Same method can be used to find the derivative of any function of form $f(x)^{g(x)}$.

$\frac{3.5 \text{ Inverse}}{\text{Trigonometric Functions}}$

The functions sin, cos and tan are not one-to-one functions, so in order for them to have an inverse, we first make them one-to-one by restricting the domain. The functions arcsin, arccos and arctan are inverses of the functions sin, cos and tan restricted as follows.

We can say: $\arcsin x$ is the angle θ whose sine is x and falls in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ $\arccos x$ is the angle θ whose cosine is x and falls in $\left[0, \pi\right]$ $\arctan x$ is the angle θ whose tangent is x and falls in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Derivatives of inverse trigonometric functions.

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \quad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}} \qquad \quad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

We justify the derivatives of inverse trigonometric functions.

Example.
$$\frac{d}{dx} \arctan(7x) =$$

Example.
$$\frac{d}{dx} (\arctan x)^2 =$$

Example.
$$\frac{d}{dx} \left(x \arcsin x + \sqrt{1 - x^2} \right) =$$

3.7 L'Hospital's Rule

When computing limits, the difficult ones are always an indeterminate form:

$$\infty - \infty$$
 $0 \cdot \infty$ $\frac{\infty}{\infty}$ $\frac{0}{0}$

The rule below helps us find some of them.

Theorem (L'Hospital's Rule). Suppose f and g are differentiable near a and $g'(x) \neq 0$ near a. If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \text{ if the latter exists, or is } \pm \infty$$

The rule also holds when $\lim_{x\to a} f(x) = \pm \infty$ and $\lim_{x\to a} g(x) = \pm \infty$, or the limit is one-sided.

Note. The rule helps with forms $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Note that this is *not* the quotient rule for derivatives, it is a statement about limits.

Example.
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{\sin x - 1} =$$

Example.
$$\lim_{x\to 0} \frac{\tan x - x}{x^3} =$$

Example.
$$\lim_{x\to 0} x \ln x =$$

Exponential indeterminate forms are: 0^0 , ∞^0 , 1^∞ .

Example.
$$\lim_{x\to 0+} x^{\sqrt{x}} =$$

Example.
$$\lim_{x \to \infty} \left(\frac{x}{x+1} \right)^x =$$

Example.
$$\lim_{x\to\infty} \frac{x^3}{e^x} =$$

Similarly, $\lim_{x\to\infty}\frac{x^c}{e^x}=0$ for any c>0, that is, e^x grows faster than any x^c , c>0, which is interesting for large positive numbers c.

Example.
$$\lim_{x\to\infty} \frac{\ln x}{\sqrt{x}} =$$

Similarly, $\lim_{x\to\infty}\frac{\ln x}{x^c}=0$ for any c>0, that is, $\ln x$ grows slower than any x^c , c>0, which is interesting for small positive numbers c.