Calculus 1 - Lecture notes MAT 250, Fall 2022 - D. Ivanšić

3.1 Exponential Functions

Recall that the function $f(x)=a^{x}, a>0, a \neq 1$ is called an exponential function. Graph:

From the graphs we can see the most important facts about exponential functions.
Continuity:
Domain $=\quad$ Range $=$
$\lim _{x \rightarrow \infty} a^{x}=\quad \quad \lim _{x \rightarrow-\infty} a^{x}=$

Using above facts, we can find limits involving a^{x} :
Example. $\lim _{x \rightarrow 3} 5^{\frac{x^{2}-4 x+3}{x-3}}=$

Example. $\lim _{x \rightarrow 4+} e^{\frac{2}{8-2 x}}=$

Example. $\lim _{x \rightarrow \infty} \frac{3^{x}-1}{3^{2 x}+5 \cdot 3^{x}-3}=$

The number e can be defined in several ways, here are two:

1) $e=\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}} \approx$

x	$(1+x)^{\frac{1}{x}}$
0.1	
0.01	
0.001	
10^{-4}	
10^{-5}	
10^{-6}	

2) Let $m_{a}=$ slope of tangent line to graph of $y=a^{x}$ at $x=0$. It can be numerically found that

$$
m_{2}<1 \text { and } m_{3}>1
$$

Since m_{a} varies continuously with a, by the Intermediate Value Theorem there is a number a such that $m_{a}=1$.

In this approach, we can define e as the number such that the graph of $y=e^{x}$ has a tangent line at $x=0$ whose slope is 1 .

Calculus 1 - Lecture notes MAT 250, Fall 2022 - D. Ivanšić

3.2 Inverse Functions and Logarithms

Definition. A function is one-to-one if it sends different x 's to different y 's, that is

$$
\text { if } x_{1} \neq x_{2} \text {, then } f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

In other words, it never happens that $x_{1} \neq x_{2}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$. Thus, no two points on the graph with different x-coordinates have the same y-coordinate. This is the idea of the:

Horizontal line test. A function is one-to-one if and only if no horizontal line intersects it more than once.

Example. Are the following graphs of one-to-one functions?

One-to-one functions are important because they are the only functions that have inverses: For every y in the range of f, we can define:

$$
f^{-1}(y)=\text { the } x \text { such that } f(x)=y
$$

Example. The function $f(x)=x^{2}$ is not one-to-one, but we have learned that its inverse is \sqrt{x}. What gives?

In general, functions that are not one-to-one, like $\sqrt{ }, \sin , \cos , \tan , \ldots$ are turned into one-to-one functions in the same way, by restricting the domain.

Inverse functions satisfy: $f^{-1}(f(x))=x$

$$
f\left(f^{-1}(x)\right)=x
$$

The graph of f^{-1} is the reflection of the graph of f in the line $y=x$.
How to find the derivative of f^{-1} :

Theorem. If f is a one-to-one differentiable function then its inverse f^{-1} is differentiable, and

$$
\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}
$$

Example. Use the theorem to find the derivative of $\sqrt[3]{x}$.

Example. Let $f(x)=2 x+\cos x$. Use the theorem to find $\left(f^{-1}\right)^{\prime}(1)$.

Definition. The exponential function $f(x)=a^{x}$ is one-to-one, so has an inverse called the logarithmic function: $f^{-1}(x)=\log _{a} x$.

Note. Think of $\log _{a} x$ as the answer to the question $a^{?}=x$, in other words,

$$
y=\log _{a} x \text { is the same as saying } a^{y}=x
$$

Properties of logarithmic functions

$\log _{a} a^{x}=x \quad a^{\log _{a} x}=x$
are just $f^{-1}(f(x))=x$ and $f\left(f^{-1}(x)\right)=x$ for $f(x)=a^{x}$ and $f^{-1}(x)=\log _{a} x$.

Related

Property	exponential property		
$\log _{a}(x y)=\log _{a} x+\log _{a} y$	$a^{u+v}=a^{u} \cdot a^{v}$		Change of base formula: $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$ $\log _{a} x^{r}=r \log _{a} M$
$a^{u-v}=\frac{a^{u}}{a^{v}}$	$\log _{b} x=\frac{\log _{a} x}{\log _{a} b}$		
	$\left(a^{u}\right)^{v}=a^{u v}$		

Special bases: $a=e$, we write $\log _{e} x=\ln x$

$$
a=10, \text { we write } \log _{10} x=\log x
$$

From the graph of $a^{x}, a>1$, we get the graph of $\log _{a} x$ and can see all the important facts about it:

Domain $=$
Range $=$
$\lim _{x \rightarrow \infty} \log _{a} x=$
$\lim _{x \rightarrow 0+} \log _{a} x=$

Example. $\lim _{x \rightarrow 0+} \log _{2}(\sin x)=$

Calculus 1 - Lecture notes MAT 250, Fall 2022 - D. Ivanšić
3.3 Derivatives of Exponential and Logarithmic Functions

Derivative of the exponential function $f(x)=a^{x}$

Theorem.

$$
\frac{d}{d x} e^{x}=e^{x} \quad \frac{d}{d x} a^{x}=\ln a \cdot a^{x}
$$

Example. $\frac{d}{d x}\left(\sqrt{x} e^{x}\right)=$

Example. $\frac{d}{d x} e^{\cos x}=$

Example. $\frac{d}{d x}\left(x^{2}+3 x\right) 2^{4 x}=$

Example. $\frac{d}{d x} \frac{x}{e^{x}}=$

Derivative of the logarithmic function $f(x)=\log _{a} x$

Theorem.

$$
\frac{d}{d x} \ln x=\frac{1}{x} \quad \frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}
$$

Example. $\frac{d}{d x} \ln \sqrt{x}=$

Example. $\frac{d}{d x} \ln \left(\frac{x+1}{x-1}\right)=$

Example. $\frac{d}{d x} \ln (\cos x)=$

Example. $\frac{d}{d x}\left(x^{2}-7 x\right) \log _{3} x=$

Example. $\frac{d}{d x} \log _{5}(\tan x)=$

Example. Find the derivative of $y=\frac{e^{3 x} \sqrt{x^{2}+1}}{\left(x^{3}+17\right)^{4}}$. This would be hard using the quotient rule (which would include a product rule for the derivative of the numerator), but we can simplify work using the trick of "logarithmic differentiation."

Example. Use logarithmic differentiation to find the derivative of $y=x^{x}$. Same method can be used to find the derivative of any function of form $f(x)^{g(x)}$.

Calculus 1 - Lecture notes MAT 250, Fall 2022 - D. Ivanšić

3.5 Inverse Trigonometric Functions

The functions sin, cos and tan are not one-to-one functions, so in order for them to have an inverse, we first make them one-to-one by restricting the domain. The functions arcsin, arccos and arctan are inverses of the functions sin, cos and tan restricted as follows.

We can say: $\arcsin x$ is the angle θ whose sine is x and falls in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ $\arccos x$ is the angle θ whose cosine is x and falls in $[0, \pi]$ $\arctan x$ is the angle θ whose tangent is x and falls in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Derivatives of inverse trigonometric functions.

$$
\frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x} \arccos x=-\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x} \arctan x=\frac{1}{1+x^{2}}
$$

We justify the derivatives of inverse trigonometric functions.

Example. $\frac{d}{d x} \arctan (7 x)=$

Example. $\frac{d}{d x}(\arctan x)^{2}=$

Example. $\frac{d}{d x}\left(x \arcsin x+\sqrt{1-x^{2}}\right)=$

Calculus 1 - Lecture notes MAT 250, Fall 2022 - D. Ivanšić

3.7 L'Hospital's Rule

When computing limits, the difficult ones are always an indeterminate form:

$$
\infty-\infty \quad 0 \cdot \infty \quad \frac{\infty}{\infty} \quad \frac{0}{0}
$$

The rule below helps us find some of them.
Theorem (L'Hospital's Rule). Suppose f and g are differentiable near a and $g^{\prime}(x) \neq 0$ near a. If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}, \text { if the latter exists, or is } \pm \infty
$$

The rule also holds when $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$, or the limit is one-sided.
Note. The rule helps with forms $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Note that this is not the quotient rule for derivatives, it is a statement about limits.

Example. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos ^{2} x}{\sin x-1}=$

Example. $\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}=$

Example. $\lim _{x \rightarrow 0} x \ln x=$

Exponential indeterminate forms are: $0^{0}, \infty^{0}, 1^{\infty}$.
Example. $\lim _{x \rightarrow 0+} x^{\sqrt{x}}=$

Example. $\lim _{x \rightarrow \infty}\left(\frac{x}{x+1}\right)^{x}=$

Example. $\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x}}=$

Similarly, $\lim _{x \rightarrow \infty} \frac{x^{c}}{e^{x}}=0$ for any $c>0$, that is, e^{x} grows faster than any $x^{c}, c>0$, which is interesting for large positive numbers c.

Example. $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=$

Similarly, $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{c}}=0$ for any $c>0$, that is, $\ln x$ grows slower than any $x^{c}, c>0$, which is interesting for small positive numbers c.

