Mathematical Concepts — Joysheet 9 MAT 117, Fall 2022 — D. Ivanšić

Name: Saul Ocean

Covers: 12.3-12.5

Show all your work!

Final answers should have accuracy to 6 decimal places (or 4 decimal places for table-derived answers). Show some work how the mean and standard deviation are computed. Giving only the answer will bring you few points.

- 1. (15pts) A meteorologist tracks the weekly amount of rainfall in a certain location. The rounded results are below.

 a) $rac{1}{2} = 50 10 = 40$
- a) Find the range of the data.

b) Find the mean of the data.

c) Find the standard deviation of the data.

b) X2	7-10+12-20+ 16-30+13-40+4-50
	7+12+16+13+4
	1510 00000000

$$= \frac{71}{52} = 29.038462 \text{ hm}$$
c) $7(10-x)^2 + 12(20-x)^2 + - + 13(40-x)^2 + 4(50-x)^2$

$$= 6851.92...$$

- 2. (15pts) The weights of inhabitants of a certain country have been found to have mean 172 lbs, with standard deviation of 6 lbs. Use the 68-95-99.7 rule (draw a picture) to find the percentage of inhabitans whose weight is:
- a) between 160 and 184 lbs
- b) under 166 lbs 50 - 68 - 16 %
- c) over 160 lbs $50 + \frac{95}{2} = 97.5\%$
- d) between 154 and 178 lbs. $\frac{99.7}{2} + \frac{68}{2} = 83.85\%$

3. (5pts) A survey of 927 adults found that 62% of them agree with continued US support for Ukraine. Find the margin of error of this survey and explain what it means.

4. (5pts) On product satisfaction surveys where a higher score means a better product, product A scored 30 on a survey with with mean 31 and standard deviation 1.5, and product B scored 45 on a survey with mean 47 and standard deviation 2.5. Use z-scores to determine which product is worse.

A:
$$\frac{30-31}{1.5} = -\frac{1}{15} = 0.666667$$
 B is werse, as it is 0.8 standard deviations below the wear.

B: $\frac{45-47}{2.5} = -\frac{2}{2.5} = -0.8$

- 5. (20pts) The lifespan of a certain insect is normally distributed with mean 41 days and standard deviation 4 days. Draw a picture showing which area you are computing as you answer:
- a) What percentage of insects live up to 46 days?
- b) What percentage of insects live longer than 50 days?
- c) What is the percentile of an insect that lived 30 days? What does this mean?
- d) What is the probability that a random insect lives between 40 and 48 days?

$$7 = \frac{50-41}{4} = \frac{9}{4} = 2.25$$

$$\beta(\frac{7}{2} \ge 2.25)$$

$$0 = 1 - \beta(\frac{7}{2} \le 2.25)$$

$$0 = 1 - \beta(\frac{7}{2} \le 2.25)$$

$$0 = 1 - 0.9878$$

$$1.22\%$$

$$= 0.0122$$

