Calculus 3 — Exam 1	Name:
MAT 309, Spring 2021 — D. Ivanšić	Show all your work!

- **1.** (11pts) Let $\mathbf{u} = \langle 1, 3, -1 \rangle$ and $\mathbf{v} = \langle 0, 2, 1 \rangle$.
- a) Calculate $-2\mathbf{u}$, $3\mathbf{v} 4\mathbf{u}$, and $\mathbf{u} \cdot \mathbf{v}$.
- b) Find a vector of length $\sqrt{5}$ in direction of **u**.
- c) If θ is the angle between ${\bf u}$ and ${\bf v},$ find $\cos\theta.$

2. (12pts) In the picture, the vectors \mathbf{u} , \mathbf{v} and \mathbf{w} are mutually perpendicular and all have length 3.

- a) Draw the vector $\mathbf{u} \mathbf{v}$ with its tail coinciding with the other tails.
- b) Which is longer (if any): $\mathbf{u} \times \mathbf{v}$ or $\mathbf{u} \times (\mathbf{u} \mathbf{v})$?
- c) Draw the vector $\mathbf{w} \times (\mathbf{u} \mathbf{v})$. Accurate length is not important.

3. (8pts) Draw the set in \mathbf{R}^3 described by: $x^2 + y^2 + z^2 \ge 1, \ y = x$

4. (12pts) Find the equation of the plane that contains the lines given by parametric equations: x = 1 + 2t, y = -2 - t, z = -3 + 4t and x = 5 - t, y = -4 + 3t, z = 5 + t. (These lines intersect — or they wouldn't determine a plane — but the point of intersection is not needed, so don't look for it.)

- 5. (16pts) This problem is about the surface $x^2 2y^2 + 5z^2 = 0$.
- a) Identify and sketch the intersections of this surface with the coordinate planes.
- b) Sketch the surface in 3D, with coordinate system visible.

6. (14pts) The curve $\mathbf{r}(t) = \langle 2\cos t, 2\sin t, \frac{1}{3}\sin(4t) \rangle$ is given, t any real number.

a) Sketch the curve in the coordinate system.

b) Find parametric equations of the tangent line to this curve when $t = \frac{\pi}{2}$ and sketch the tangent line.

- 7. (13pts) The points A = (1, 3, -2) and B = (4, -1, 3) are given.
- a) Write parametric equations of the line segment AB.
- b) Compute the length of the line segment using the parametrization and arc length formula.
- c) Compare your answer in b) with the distance from A to B.

8. (14pts) An arrow is launched from ground level at a 45° angle with initial speed 50 meters per second.

a) Assuming gravity acts in the usual negative y-direction (let g = 10), find the vector function $\mathbf{r}(t)$ representing the position of the arrow.

- b) Find the range of the arrow.
- c) Find the maximum height the arrow reaches.

Bonus (10pts) Find the parametric equations of the line that is the intersection of the planes x - y + 2z = 2 and x - y - 3z = 6.

Calculus 3 — Exam 2 MAT 309, Spring 2021 — D. Ivanšić

Name:

Show all your work!

1. (10pts) Let $f(x, y) = \sqrt{y - x^2}$. a) Find the domain of f.

b) Sketch the contour map for the function, drawing level curves for levels k = -1, 0, 1, 2. Note the domain on the picture.

c) Suppose f(x, y) is the temperature at point (x, y) and a heat-seeking insect (always moves in direction of greatest heat increase) starts at point (1, 2). Sketch the path the insect will take and explain.

- **2.** (16pts) Let $f(x, y) = xe^{x^3 + y^3}$.
- a) At point (1,0), find the directional derivative of f in the direction of $\langle -2, 1 \rangle$.
- b) In what direction is the directional derivative the greatest, and what is its value?

3. (12pts) Consider the elliptical cone $y^2 + 3z^2 - x^2 = 0$.

a) Find the equation of the tangent plane to the cone at a generic point (x_0, y_0, z_0) . Simplify the equation, keeping in mind that the point (x_0, y_0, z_0) satisfies the equation of the cone. b) Show that the tangent plane always contains the origin.

4. (18pts) Let $U = \frac{\ln x}{xy}$, $x = \sqrt{st}$, $y = s^2 - t^2$. Use the chain rule to find $\frac{\partial U}{\partial s}$ when s = 1, t = 2.

5. (12pts) The range of a projectile fired at angle α with initial velocity v is given by $R = \frac{v^2 \sin(2\alpha)}{10}$ (*R* is in meters, v in meters per second, α in radians). Use differentials to estimate the change in range of a projectile fired at 40 m/s at angle $\frac{\pi}{6}$ if velocity is decreased by 0.2 meters per second, and angle is increased by 0.1 radian.

6. (12pts) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ at the point $\left(0, \frac{\pi}{4}, \frac{\pi}{4}\right)$, if $\tan x + \tan y + \tan z = xyz + 2$.

7. (20pts) Find and classify the local extremes for $f(x, y) = 3x^2y + y^3 - 3x^2 - 3y^2$.

Bonus (10pts) Let A = (0,0), B = (1,0) and C = (0,2) and let d_A , d_B and d_C represent the distance from a point (x, y) to A, B and C, respectively. Find the absolute maximum and minimum of $d_A^2 + d_B^2 + d_C^2$ among all points (x, y) in the triangle ABC (edges are included).

Name:

Show all your work!

1. (16pts) Let D be the region in the first quadrant bounded by the curves $y = \sqrt{x}$, x = 0 and y = 2.

a) Sketch the region D.

b) Set up $\iint_D \frac{1}{y^3 + 1} dA$ as iterated integrals in both orders of integration.

c) Evaluate the double integral using the easier order.

2. (12pts) Let *D* be the region that is under both curves $y = \sin x$ and $y = \cos x$ and above the *x* axis, and where $0 \le x \le \frac{\pi}{2}$. Set up $\iint_D x + y \, dA$, but do not evaluate the integral. Sketch the region of integration first.

3. (20pts) Use polar coordinates to find $\iint_D \frac{x}{x^2 + y^2} dA$, if D is the region inside the circle $x^2 + y^2 = \frac{1}{4}$, and outside the cardioid $r = 1 + \cos \theta$. Sketch the region of integration first.

4. (18pts) Sketch the region E in the first octant $(x, y, z \ge 0)$ that is inside the cylinder $y^2 + z^2 = 4$ and "behind" the plane y = 3x. Then write the two iterated triple integrals that stand for $\iiint_E f \, dV$ which end in $dz \, dy \, dx$ and $dy \, dz \, dx$.

5. (20pts) Use cylindrical or spherical coordinates to evaluate $\iiint_E z \, dV$, if E is the region that is above the cone $z = \sqrt{3x^2 + 3y^2}$ and inside the sphere $x^2 + y^2 + z^2 = 9$. Sketch the region E.

6. (14pts) Use cylindrical coordinates to set up the integral for the volume of a spherical cap, the region inside the sphere $x^2 + y^2 + z^2 = a^2$ that is above the plane z = b, where a > 0 and $0 \le b \le a$. Do not evaluate the integral. Sketch the region E.

Bonus (10pts) Sketch the surfaces given by the equations:

$$z = \frac{1}{\sqrt{x^2 + y^2}} \qquad \qquad \rho = 1 + \sin \phi$$

Calculus 3 — Exam 4 MAT 309, Spring 2021 — D. Ivanšić

Name:

Show all your work!

1. (16pts) Let $\mathbf{F}(x, y) = \langle x - y, x + y \rangle$.

a) Sketch the vector field by evaluating it at 9 points (for example, a 3×3 grid).

b) Is F conservative? Now, can you justify it just by looking at the picture?

- 2. (20pts) In both cases set up and simplify the set-up, but do NOT evaluate the integral. a) $\int_C \frac{xyz}{x^2 + z^2} ds$, where C is the helix x = 3t, $y = \cos t$, $z = \sin t$, $0 \le t \le 2\pi$.
- b) $\int_C \mathbf{F} \cdot d\mathbf{r}$, if $\mathbf{F}(x,y) = \left\langle \frac{x-y}{x+y+4}, \frac{x+y}{x+y+4} \right\rangle$, where *C* is part of the circle $x^2 + y^2 = 9$ from point (0,3) to point (-3,0), going the short way.

3. (16pts) Let $\mathbf{F}(x, y) = \langle 2x, 8y \rangle$. It is easy to see that $\mathbf{F} = \nabla f$, where $f(x, y) = x^2 + 4y^2$. Apply the fundamental theorem for line integrals to:

a) Find $\int_C \mathbf{F} \cdot d\mathbf{r}$, if C is the circle of radius 2, centered at (1,0).

b) Find $\int_C \mathbf{F} \cdot d\mathbf{r}$, if C is a curve from (0,0) to (1,2). (Why is the curve not specified?)

c) Sketch the directions of the vector field \mathbf{F} by exploiting the function f. Very little computation is needed here.

4. (18pts) Consider the region D inside the triangle with vertices (0,0), (2,0) and (2,1). a) Draw the region.

b) Use Green's theorem to find the line integral $\int_C (y \cos x - xy \sin x) dx + (xy + x \cos x) dy$, where C is the boundary of the region D, traversed counterclockwise. (Scary-looking, but it's not!)

5. (10pts) Suppose a particle moves in the velocity field $\mathbf{v}(x, y) = \langle x^2 - y^2, xy \rangle$. If it is at point (1,3) at time t = 2, estimate its location at time t = 2.1.

- 6. (20pts) Let $\mathbf{F}(x, y) = \left\langle \frac{2x}{x^2 + y}, e^y + \frac{1}{x^2 + y} \right\rangle$. a) Find the domain of f: it has two parts, and consider the part that contains (0, 1). b) Compute $\frac{\partial Q}{\partial x}$ and $\frac{\partial P}{\partial y}$.
- c) Is **F** is conservative? Your justification should say something about the domain.
- d) If the field is conservative, find its potential function.

Bonus. (10pts) Pictured is a spring 2020 friend from calculus 2, the curve parametrized by $x(t) = t^3 - 12t$, $y(t) = -t^2 - 2t + 8$. Use Green's theorem to find the area of the loop.

Calculus 3 — Final Exam	Name:
MAT 309, Spring 2021 — D. Ivanšić	Show all your work!

1. (12pts) Find the equation of the plane that contains the lines given by parametric equations: x = -2 - t, y = 12 + 3t, z = 2 + 2t and x = 7 - 6t, y = 1 + 2t, z = -3 - t. (These lines intersect — or they wouldn't determine a plane — but the point of intersection is not needed, so don't look for it.)

2. (20pts) Consider the function $f(x, y) = \frac{y}{x}$ on domain $\{(x, y) \mid x > 0\}$.

a) Sketch the contour map for the function, drawing level curves for levels $k = 0, \frac{1}{2}, 1, 2, -1, -\frac{1}{2}$. b) At point (3, -2), find the directional derivative of f in the direction of $\langle -1, 1 \rangle$. In what direction is the directional derivative the greatest? What is the directional derivative in that direction?

c) Let $\mathbf{F} = \nabla f$. Sketch the vector field \mathbf{F} .

Apply the fundamental theorem for line integrals to answer:

d) What is $\int_C \mathbf{F} \cdot d\mathbf{r}$, if C is part of the unit circle from (0,1) to $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$?

e) What is $\int_C \mathbf{F} \cdot d\mathbf{r}$, if C is a curve going from any point on level curve k = 3 to any point on level curve k = -2?

3. (12pts) Find the equation of the tangent plane to the surface $x + y + z = e^{xyz}$ at point (2, 0, -1).

4. (14pts) Find and classify the local extremes for $f(x, y) = x^2y + 2xy^2 + 3y$.

- 5. (16pts) Let D be the region bounded by the curves $y = e^x$, y = e and x = 0. a) Sketch the region D.
- b) Set up $\iint_D \frac{1}{y} dA$ as iterated integrals in both orders of integration.
- c) Evaluate the double integral using the order you find easier.

6. (18pts) Sketch the region E in the first octant $(x, y, z \ge 0)$ that is inside the cylinder $y^2 + z^2 = 4$ and "behind" the plane y = 3x. Then write the two iterated triple integrals that stand for $\iiint_E f \, dV$ which end in $dz \, dy \, dx$ and $dy \, dz \, dx$.

7. (14pts) Use either cylindrical or spherical coordinates to find the volume of a spherical cap E, the region inside the sphere $x^2 + y^2 + z^2 = 8$ that is above the plane z = 2. Sketch the region E.

8. (10pts) Set up and simplify the set-up, but do NOT evaluate the integral: $\int_C \frac{x+y}{xy+1} ds$, where C is the part of the curve $y = x^3 - x$ from (-1, 0) to (1, 0).

9. (20pts) Consider the region inside the circle $x^2 + y^2 = 4$ and above the lines $y = \sqrt{3}x$ and $y = -\frac{1}{\sqrt{3}}x$.

a) Draw the region.

b) Use Green's theorem to find the line integral $\int_C y^3 dx + x^3 dy$, where C is the boundary of the region D, traversed counterclockwise.

10. (12pts) The range of a projectile fired at angle α with initial velocity v is given by $R = \frac{v^2 \sin(2\alpha)}{10}$ (*R* is in meters, v in meters per second, α in radians). Use differentials to estimate the change in range of a projectile fired at 70 m/s at angle $\frac{\pi}{3}$ if velocity is increased by 5 meters per second, and angle is decreased by 0.2 radians.

Bonus. (10pts) Pictured is a spring 2020 friend from calculus 2, the curve parametrized by $x(t) = t^3 - 12t$, $y(t) = -t^2 - 2t + 8$. Use Green's theorem to find the area of the loop.

