Calculus 3 - Final Exam MAT 309, Spring 2018 - D. Ivanšić

\qquad

1. (12pts) Find the equation of the plane that contains the point $A=(3,1,-2)$ and the line given by parametric equations $x=3-2 t, y=4, z=-1+t$.
2. (20pts) Let $f(x, y)=\frac{1}{x^{2}+y^{2}}$.
a) Sketch the contour map for the function, drawing level curves for levels $k=0, \frac{1}{4}, 1,4$.
b) At point $(1,-2)$, find the directional derivative of f in the direction of $\langle-2,-3\rangle$. In what direction is the directional derivative the greatest? What is the directional derivative in that direction?
c) Let $\mathbf{F}=\nabla f$. Sketch the vector field \mathbf{F}.

Apply the fundamental theorem for line integrals to answer:
d) What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, if C is the straight line from $(1,1)$ to $(3,0)$?
e) What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, if C is a curve going from any point on level curve $k=4$ to any point on level curve $k=1$?
3. (14pts) The curve $\mathbf{r}(t)=\langle t+3, \cos t, \sin t\rangle$ is given, t any real number.
a) Sketch the curve in the coordinate system.
b) Find parametric equations of the tangent line to this curve when $t=0$ and sketch the tangent line.
4. (14pts) Find and classify the local extremes for $f(x, y)=2 x^{2}-5 y^{2}-2 x y+6 x-14 y$.
5. (16pts) Let D be the region in the first quadrant bounded by the curves $y=x^{2}, y=0$ and $x=2$.
a) Sketch the region D.
b) Set up $\iint_{D} e^{x^{3}} d A$ as iterated integrals in both orders of integration.
c) Evaluate the double integral using the easier order.
6. (18pts) Sketch the region E in the first octant $(x, y, z \geq 0)$ that is inside the sphere $x^{2}+y^{2}+z^{2}=1$ and above the plane $z=2 y$. Then write the two iterated triple integrals that stand for $\iiint_{E} f d V$ which end in $d x d z d y$ and $d z d y d x$.
7. (14pts) Use either cylindrical or spherical coordinates to set up $\iiint_{E} \frac{x^{2}+y^{2}+z^{2}}{x^{2}+1} d V$, where E is the region inside the sphere $x^{2}+y^{2}+z^{2}=4$ and above the plane $z=\sqrt{2}$. Simplify the expression but do NOT evaluate the integral. Sketch the region E.
8. (10pts) Set up and simplify the set-up, but do NOT evaluate the integral: $\int_{C} \frac{x+y}{x y+1} d s$, where C is the part of the curve $y=x^{3}-x$ from $(-1,0)$ to $(1,0)$.
9. (20pts) Consider the region inside the circle $x^{2}+y^{2}=4$ and above the lines $y=\sqrt{3} x$ and $y=-\frac{1}{\sqrt{3}} x$.
a) Draw the region.
b) Use Green's theorem to find the line integral $\int_{C} y^{3} d x+x^{3} d y$, where C is the boundary of the region D, traversed counterclockwise.
10. (12pts) Use differentials to estimate the change in the volume of a cylindrical can if its height decreases from 28 to 26 centimeters, and its radius increases from 14 to 15 centimeters.

Bonus (10pts) Do problem 6 for the iterated triple integral that ends in $d y d z d x$.

