Calculus 3 — Final Exam	Name:
MAT 309, Spring 2018 — D. Ivanšić	Show all your work!

1. (12pts) Find the equation of the plane that contains the point A = (3, 1, -2) and the line given by parametric equations x = 3 - 2t, y = 4, z = -1 + t.

2. (20pts) Let $f(x,y) = \frac{1}{x^2 + y^2}$.

a) Sketch the contour map for the function, drawing level curves for levels $k = 0, \frac{1}{4}, 1, 4$.

b) At point (1, -2), find the directional derivative of f in the direction of $\langle -2, -3 \rangle$. In what direction is the directional derivative the greatest? What is the directional derivative in that direction?

c) Let $\mathbf{F} = \nabla f$. Sketch the vector field \mathbf{F} .

Apply the fundamental theorem for line integrals to answer:

d) What is $\int_C \mathbf{F} \cdot d\mathbf{r}$, if C is the straight line from (1, 1) to (3, 0)?

e) What is $\int_C \mathbf{F} \cdot d\mathbf{r}$, if C is a curve going from any point on level curve k = 4 to any point on level curve k = 1?

3. (14pts) The curve $\mathbf{r}(t) = \langle t+3, \cos t, \sin t \rangle$ is given, t any real number.

a) Sketch the curve in the coordinate system.

b) Find parametric equations of the tangent line to this curve when t = 0 and sketch the tangent line.

4. (14pts) Find and classify the local extremes for $f(x, y) = 2x^2 - 5y^2 - 2xy + 6x - 14y$.

5. (16pts) Let D be the region in the first quadrant bounded by the curves $y = x^2$, y = 0and x = 2.

a) Sketch the region D.

b) Set up $\iint_D e^{x^3} dA$ as iterated integrals in both orders of integration.

c) Evaluate the double integral using the easier order.

6. (18pts) Sketch the region E in the first octant $(x, y, z \ge 0)$ that is inside the sphere $x^2 + y^2 + z^2 = 1$ and above the plane z = 2y. Then write the two iterated triple integrals that stand for $\iiint_E f \, dV$ which end in $dx \, dz \, dy$ and $dz \, dy \, dx$.

7. (14pts) Use either cylindrical or spherical coordinates to set up $\iiint_E \frac{x^2 + y^2 + z^2}{x^2 + 1} dV$, where *E* is the region inside the sphere $x^2 + y^2 + z^2 = 4$ and above the plane $z = \sqrt{2}$. Simplify the expression but do NOT evaluate the integral. Sketch the region *E*.

8. (10pts) Set up and simplify the set-up, but do NOT evaluate the integral: $\int_C \frac{x+y}{xy+1} ds$, where C is the part of the curve $y = x^3 - x$ from (-1,0) to (1,0).

9. (20pts) Consider the region inside the circle $x^2 + y^2 = 4$ and above the lines $y = \sqrt{3}x$ and $y = -\frac{1}{\sqrt{3}}x$.

a) Draw the region.

b) Use Green's theorem to find the line integral $\int_C y^3 dx + x^3 dy$, where C is the boundary of the region D, traversed counterclockwise.

10. (12pts) Use differentials to estimate the change in the volume of a cylindrical can if its height decreases from 28 to 26 centimeters, and its radius increases from 14 to 15 centimeters.

Bonus (10pts) Do problem 6 for the iterated triple integral that ends in dy dz dx.