Calculus 3 - Exam 3

 MAT 309, Spring 2018 - D. IvanšićName: \qquad

1. (17 pts) Let D be the region in the first quadrant bounded by the curves $y=x^{2}+1$, $x=0$ and $y=5$.
a) Sketch the region D.
b) Set up $\iint_{D} \frac{1}{\sqrt{y-1}} d A$ as iterated integrals in both orders of integration.
c) Evaluate the double integral using the easier order.
2. (17pts) Find $\iint_{D} x y d A$ if D is the triangle bounded by $y=1-x, y=x-3$ and $y=3$. Sketch the region of integration first.
3. (20pts) Use polar coordinates to find $\iint_{D} \frac{y}{\sqrt{x^{2}+y^{2}}} d A$, if D is the region inside the circle $(x-1)^{2}+y^{2}=1$, outside the circle $x^{2}+y^{2}=2$ and above the x-axis. Sketch the region of integration first.
4. (18pts) Sketch the region E in the first octant $(x, y, z \geq 0)$ that is inside the sphere $x^{2}+y^{2}+z^{2}=1$ and above the plane $z=2 y$. Then write the two iterated triple integrals that stand for $\iiint_{E} f d V$ which end in $d x d z d y$ and $d z d y d x$.
5. (14pts) Use spherical coordinates to set up the triple integral for the volume of the region that is between the spheres $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=25$, above the $x y$-plane, and between the planes $y=\sqrt{3} x$ and $y=-\sqrt{3} x$, the part where $y \geq 0$. Do not evaluate the integral. Sketch the region E.
6. (14pts) Use cylindrical coordinates to set up $\iiint_{E} \frac{x^{2}+y^{2}+z^{2}}{x^{2}+y^{2}+1} d V$, where E is the region bounded by the paraboloids $z=x^{2}+y^{2}-3$ and $z=9-x^{2}-y^{2}$. Do not evaluate the integral. Sketch the region E.

Bonus (10pts) Do problem 4 for the iterated triple integral that ends in $d y d z d x$.

