Calculus 3 — Exam 3 MAT 309, Spring 2018 — D. Ivanšić

Name:

Show all your work!

1. (17pts) Let D be the region in the first quadrant bounded by the curves $y = x^2 + 1$, x = 0 and y = 5.

a) Sketch the region D.

b) Set up $\iint_D \frac{1}{\sqrt{y-1}} dA$ as iterated integrals in both orders of integration.

c) Evaluate the double integral using the easier order.

2. (17pts) Find $\iint_D xy \, dA$ if D is the triangle bounded by y = 1 - x, y = x - 3 and y = 3. Sketch the region of integration first.

3. (20pts) Use polar coordinates to find $\iint_D \frac{y}{\sqrt{x^2 + y^2}} dA$, if D is the region inside the circle $(x - 1)^2 + y^2 = 1$, outside the circle $x^2 + y^2 = 2$ and above the *x*-axis. Sketch the region of integration first.

4. (18pts) Sketch the region E in the first octant $(x, y, z \ge 0)$ that is inside the sphere $x^2 + y^2 + z^2 = 1$ and above the plane z = 2y. Then write the two iterated triple integrals that stand for $\iiint_E f \, dV$ which end in $dx \, dz \, dy$ and $dz \, dy \, dx$.

5. (14pts) Use spherical coordinates to set up the triple integral for the volume of the region that is between the spheres $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 25$, above the *xy*-plane, and between the planes $y = \sqrt{3}x$ and $y = -\sqrt{3}x$, the part where $y \ge 0$. Do not evaluate the integral. Sketch the region *E*.

6. (14pts) Use cylindrical coordinates to set up $\iiint_E \frac{x^2 + y^2 + z^2}{x^2 + y^2 + 1} dV$, where *E* is the region bounded by the paraboloids $z = x^2 + y^2 - 3$ and $z = 9 - x^2 - y^2$. Do not evaluate the integral. Sketch the region *E*.

Bonus (10pts) Do problem 4 for the iterated triple integral that ends in dy dz dx.