## Calculus 3 - Exam 2 MAT 309, Spring 2018 - D. Ivanšić

$\qquad$

1. (10pts) Let $h(x, y)=x^{2}+4 y^{2}$.
a) Find the domain of $h$.
b) Sketch the contour map for the function, drawing level curves for levels $k=-1,0,1,4$. Note the domain on the picture.
c) Without computation, draw the directions of $\nabla h(1,0)$ and $\nabla h\left(\sqrt{2}, \frac{1}{\sqrt{2}}\right)$. Note that these points are on the level curves you drew in b).
2. (16pts) Let $f(x, y)=\frac{\sin ^{2} x}{\cos ^{2} y}$.
a) At point $\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$, find the directional derivative of $f$ in the direction of $\langle 1,3\rangle$.
b) In what direction is the directional derivative the greatest, and what is its value?
3. (12pts) Find the equation of the tangent plane to the hyperbolic paraboloid $y=2 x^{2}-3 z^{2}$ at the point $(-1,-10,2)$. Simplify the equation to standard form.
4. (18pts) Let $W=\frac{x}{y-x}, x=t e^{s t}, y=s^{2}+t^{2}$. Use the chain rule to find $\frac{\partial W}{\partial t}$ when $s=0, t=2$.
5. (12pts) The body mass index or BMI is calculated using the formula $B M I=\frac{w}{h^{2}}$, where $w$ and $h$ are weight and height of an individual in kilograms and meters, respectively. Use differentials to estimate the change in BMI if a 1-meter high child weighing 15 kg grows by 1.5 cm in height and 0.5 kg in weight.
6. (12pts) Use implicit differentiation to find $\frac{\partial z}{\partial y}$ at the point $(1,1,1)$, if $\sqrt{x}-\sqrt{y}+\sqrt{z}+\ln (x y z)=1$.
7. (20pts) Find and classify the local extremes for $f(x, y)=x^{2}-x y^{2}+y^{2}$.

Bonus (10pts) Among all rectangular boxes of volume 1, find the one with the shortest diagonal $d$. Hint: minimize $d^{2}$.

