Calculus 3 — Exam 2 MAT 309, Spring 2018 — D. Ivanšić

Name:

Show all your work!

1. (10pts) Let $h(x, y) = x^2 + 4y^2$.

a) Find the domain of h.

b) Sketch the contour map for the function, drawing level curves for levels k = -1, 0, 1, 4. Note the domain on the picture.

c) Without computation, draw the directions of $\nabla h(1,0)$ and $\nabla h(\sqrt{2},\frac{1}{\sqrt{2}})$. Note that these points are on the level curves you drew in b).

2. (16pts) Let $f(x,y) = \frac{\sin^2 x}{\cos^2 y}$.

- a) At point $(\frac{\pi}{4}, \frac{\pi}{3})$, find the directional derivative of f in the direction of $\langle 1, 3 \rangle$.
- b) In what direction is the directional derivative the greatest, and what is its value?

3. (12pts) Find the equation of the tangent plane to the hyperbolic paraboloid $y = 2x^2 - 3z^2$ at the point (-1, -10, 2). Simplify the equation to standard form.

4. (18pts) Let
$$W = \frac{x}{y-x}$$
, $x = te^{st}$, $y = s^2 + t^2$. Use the chain rule to find $\frac{\partial W}{\partial t}$ when $s = 0, t = 2$.

5. (12pts) The body mass index or BMI is calculated using the formula $BMI = \frac{w}{h^2}$, where w and h are weight and height of an individual in kilograms and meters, respectively. Use differentials to estimate the change in BMI if a 1-meter high child weighing 15 kg grows by 1.5cm in height and 0.5kg in weight.

6. (12pts) Use implicit differentiation to find $\frac{\partial z}{\partial y}$ at the point (1, 1, 1), if $\sqrt{x} - \sqrt{y} + \sqrt{z} + \ln(xyz) = 1.$

7. (20pts) Find and classify the local extremes for $f(x, y) = x^2 - xy^2 + y^2$.

Bonus (10pts) Among all rectangular boxes of volume 1, find the one with the shortest diagonal d. Hint: minimize d^2 .