Calculus 3 - Exam 1 MAT 309, Spring 2018 - D. Ivanšić

\qquad

1. (11pts) Let $\mathbf{u}=\langle 3,-7,1\rangle$ and $\mathbf{v}=\langle 3,0,-4\rangle$.
a) Calculate $3 \mathbf{u}, 2 \mathbf{u}-\mathbf{v}$, and $\mathbf{u} \cdot \mathbf{v}$.
b) Find a vector of length 4 in direction of \mathbf{u}.
c) Find the projection of \mathbf{u} onto \mathbf{v}.
2. (12pts) In the picture, a tetrahedron $A B C D$ is given. All edges that meet at D are perpendicular to each other and have length 4 . Note that this makes $A B C$ an equilateral triangle. Draw the vectors $\mathbf{u} \times \mathbf{v}$ and $\mathbf{w} \times \mathbf{u}$ and determine their length.

3. (8pts) Draw the region in \mathbf{R}^{3} described by:
$x^{2}+z^{2} \leq 4,-2 \leq y \leq 5$
4. (12pts) Find the equation of the plane that contains the points $A=(0,3,-4), B=$ $(3,1,-2)$ and $C=(4,0,2)$.
5. (16pts) This problem is about the surface $\frac{x^{2}}{4}-\frac{y^{2}}{9}-\frac{z^{2}}{1}=1$.
a) Identify and sketch the intersections of this surface with the coordinate planes.
b) Sketch the surface in 3D, with coordinate system visible.
6. (14pts) The curve $\mathbf{r}(t)=\left\langle t, t^{2}+1, \sin t\right\rangle$ is given, t any real number.
a) Sketch the curve in the coordinate system.
b) Find parametric equations of the tangent line to this curve when $t=0$ and sketch the tangent line.
7. (13pts) Find the length of the curve $\mathbf{r}(t)=\left\langle t \cos t, t \sin t, \frac{2 \sqrt{2}}{3} t^{\frac{3}{2}}\right\rangle, 0 \leq t \leq 4$.
8. (14pts) Suppose the corner of a room is represented by the three coordinate planes. An egg is launched from point $(3,7,6)$ with initial velocity vector $\mathbf{v}_{\mathbf{0}}=\langle-5,-2,7\rangle$.
a) Assuming gravity acts in the usual negative z-direction (let $g=10$), find the vector function $\mathbf{r}(t)$ representing the egg's position.
b) On which wall or floor does the egg splatter?

Bonus (10pts) For every pair of skew (nonintersecting) lines in \mathbf{R}^{3}, there is a line that intersects them both and is perpendicular to both. Find this line for the two lines given parametrically below. Hint: if P is a point on one of the lines, and Q on the other, what conditions have to be satisfied so that the line determined by P and Q is the requested line?

$$
\begin{array}{ll}
x=-8+5 t & x=3+2 s \\
y=-1+t & y=-4-2 s \\
z=-5+2 t & z=2-s
\end{array}
$$

