College Algebra — Lecture notes MAT 140, Spring 2021 — D. Ivanšić

$\frac{4.1,\ 4.2\ Polynomial}{Functions\ and\ Their\ Graphs}$

Example. Draw graphs of power functions x^n for the exponents given.

$$x^2, x^4, x^6$$

$$x^3, x^5, x^7$$

Graphs of x^{even} have the same shape as x^2 , graphs of x^{odd} have the same shape as x^3 .

Definition. A general *polynomial* is a function of form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

Some terminology: $a_n x^n$ is called the *leading term*, a_n the *leading coefficient*; if $a_n \neq 0$, n is the *degree* of the polynomial.

Example. Compare the graphs of $f(x) = 2x^3 - 3x^2 - 5x - 4$ and $g(x) = 2x^3$.

Fact. For large x or large negative x, every polynomial behaves like its leading term $a_n x^n$. This is referred to as the *end behavior* of the polynomial. Thus, graphs of polynomials look like one of the four pictures below.

Example. Draw the graph of the polynomial $f(x) = (x-2)^2(x+1)(x-4)$.

x-intercepts (also called zeroes) are 2, -1, 4 their corresponding multiplicities are 2, 1, 1 (exponents on factors related to the zeroes)

Fact. If c is a zero of a polynomial P(x), then x-c is a factor of P(x), so $P(x)=(x-c)^kg(x)$.

Definition. If $(x-c)^{k+1}$ is not a factor of the polynomial P(x), but $(x-c)^k$ is, we say the zero c has multiplicity k. Behavior of the graph at a zero depends on its multiplicity in this way:

Multiplicity of c	Graph of $P(x)$ at c
even odd	touches x -axis crosses x -axis

Example. Let $f(x) = (x+3)^2(x^2+7)(1-x)$. For the polynomial, find the zeroes and their multiplicities, determine end behavior and use this information to help you sketch the graph of the polynomial.

Guidelines for graphing a polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$

- 1) Determine end behavior for large |x|, it looks like $a_n x^n$.
- 2) Find the y-intercept, the zeroes (x-intercepts, there can be at most n zeroes) and their multiplicities.
- 3) Find the turning points (local minima and maxima, there can be at most n-1 of them).

Example. Use the guidelines to graph the polynomial $f(x) = x^4 - 4x^3 + 3x^2$.