

Find the intervals of convergence for the series below. Don't forget to check the endpoints.

1. (16pts) $\sum_{n=0}^{\infty} 3^{n} \cdot \sqrt{n} \cdot(x-4)^{n}$
2. (10pts) $\sum_{n=1}^{\infty} \frac{e^{n}}{(2 n)!} x^{n}$
3. (6pts) Use a known power series to find the sum:
$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n 3^{n}}=$
4. (8pts) Use a known power series to find the limit.
$\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x^{3}}=$
5. (14pts) Use geometric series and differentiation to get a power series for $\frac{x^{2}}{\left(1-x^{2}\right)^{2}}$. State the interval of convergence (no need to check the endpoints).
6. (12pts) Use known power series to show that $\frac{d}{d x} \cos x=-\sin x$.
7. (18pts) Let $f(x)=\sqrt[3]{x}$.
a) Find the 2nd Taylor polynomial for f centered at $a=8$.
b) Use Taylor's formula to get an estimate of the error $\left|R_{2}\right|$ on the interval [6.5, 9.5]. Leave your answer as a fraction.
8. (16pts) Use the known power series for $\cos x$ to find the series representing $\int_{0}^{\frac{1}{2}} \cos \sqrt{x} d x$. (Note that $\cos \sqrt{x}$ does not have an antiderivative that is an elementary function.) Give an approximation of the definite integral with accuracy 10^{-3}. Write the approximation as a sum (you do not have to simplify it).

Bonus (10pts) Find a fraction that is the approximation of $\sqrt{5}$ with accuracy 10^{-2}. Start as below and take advantage of the binomial series.
$\sqrt{5}=\sqrt{4\left(1+\frac{1}{4}\right)}=$

