Calculus 2 - Exam 3
 MAT 308, Fall 2020 - D. Ivanšić

Name: \qquad
Find the limits, if they exist.

1. $(6 \mathrm{pts}) \lim _{n \rightarrow \infty} \frac{n}{1.5^{n}}=$
2. (6pts) $\lim _{n \rightarrow \infty}\left(2+(-1)^{n}\right)=$
3. (10pts) Find the limit. Use the theorem that rhymes with the insects typically found on cats and dogs.
$\lim _{n \rightarrow \infty} \frac{2^{n}(\sin (17 n)+1)}{3^{n}}$
4. (6pts) Write the series using summation notation:
$\frac{3}{8}-\frac{7}{16}+\frac{11}{32}-\frac{15}{64}+\cdots=$
5. (12pts) Justify why the series converges and find its sum.
$\sum_{n=2}^{\infty} \frac{2 \cdot 3^{2 n-1}}{2^{4 n+3}}=$

Determine whether the following series converge and justify your answer.
6. $(6 \mathrm{pts}) \sum_{n=1}^{\infty} \frac{2 n-1}{n}$
7. $(12 \mathrm{pts}) \sum_{n=1}^{\infty} \frac{1+\sqrt[n]{5}}{3 n^{2}}$
8. (20pts) Consider the alternating series $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n+\sqrt{n}}$.
a) Is the series convergent? Justify.
b) Is the series absolutely convergent? Justify.

Determine whether the following series converge using the root or ratio test.
9. (11pts) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{22^{n}}{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}$
10. (11pts) $\sum_{n=1}^{\infty} \frac{n^{4}+3 n^{2}+1}{2^{3 n+1}}$

Bonus. (10pts) Play this game on a basic calculator: enter any positive number, then keep pressing the $\sqrt{ }$ key. After a while, the display stabilizes at a number. (In case you have never used a basic calculator, pressing $\sqrt{ }$ immediately returns the square root of the number.)
a) Use a sequence and a limit to explain what is happening.
b) At which number does the display stabilize?

