Calculus 2 - Exam 1
 MAT 308, Fall 2020 - D. Ivanšić

Name:
Show all your work!
Find the following integrals:

1. $(7 \mathrm{pts}) \int x e^{3 x} d x=$
2. (7pts) $\int \sin ^{2} x d x=$

Determine whether the following improper integral converges, and, if so, evaluate it. (Calculate directly, comparison would be hard.)
3. (14pts) $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x=$

Use trigonometric substitution to evaluate the following integrals. Don't forget to return to the original variable where appropriate.
4. $(14 \mathrm{pts}) \int \frac{x^{3}}{\sqrt{x^{2}-1}} d x=$
5. $(14 \mathrm{pts}) \int_{0}^{\frac{3}{2}} \frac{1}{\left(9-x^{2}\right)^{\frac{3}{2}}} d x=$

Use the method of partial fractions to find the following integrals.
6. (14pts) $\int \frac{-x^{2}-3 x+2}{(x+1)\left(x^{2}+1\right)} d x=$
7. (10pts) Use comparison to determine whether the improper integral $\int_{1}^{\infty} \frac{x^{2}}{x^{4}+7} d x$ converges.
8. (20pts) Suppose we wanted to approximate the number $\ln 4$. We could do it by approximating the integral $\int_{1}^{4} \frac{1}{x} d x=\ln 4$, which uses only the four algebraic operations.
a) Write the expression you would use to calculate T_{6}, the trapezoid rule with 6 subintervals. All the terms need to be explicitly written, do not use f in the sum.
b) Find the error estimate for T_{n} in general. You will need the second derivative of $\frac{1}{x}$.
c) Estimate the error for T_{6}.
d) What should n be in order for T_{n} to give you an error less than 10^{-4} ?

Bonus (10pts) On the interval [1,3], draw a nice big picture of any concave upward function f whose graph is above the x-axis. Then draw the straight-edge shapes whose area is represented by the trapezoid and midpoint approximations T_{2} and M_{2} for the integral $I=$ $\int_{1}^{3} f(x) d x$. Put the numbers I, T_{2} and M_{2} in increasing order and justify this order precisely with your picture.

