Calculus 2 — Exam 1 MAT 308, Fall 2020 — D. Ivanšić

Name:

Show all your work!

Find the following integrals:

1. (7pts)
$$\int x e^{3x} dx =$$

2. (7pts)
$$\int \sin^2 x \, dx =$$

Determine whether the following improper integral converges, and, if so, evaluate it. (Calculate directly, comparison would be hard.)

3. (14pts)
$$\int_{1}^{\infty} \frac{\ln x}{x^2} dx =$$

Use trigonometric substitution to evaluate the following integrals. Don't forget to return to the original variable where appropriate.

4. (14pts)
$$\int \frac{x^3}{\sqrt{x^2 - 1}} \, dx =$$

5. (14pts)
$$\int_0^{\frac{3}{2}} \frac{1}{(9-x^2)^{\frac{3}{2}}} dx =$$

Use the method of partial fractions to find the following integrals.

6. (14pts)
$$\int \frac{-x^2 - 3x + 2}{(x+1)(x^2+1)} dx =$$

7. (10pts) Use comparison to determine whether the improper integral $\int_1^\infty \frac{x^2}{x^4+7} dx$ converges.

8. (20pts) Suppose we wanted to approximate the number $\ln 4$. We could do it by approximating the integral $\int_{1}^{4} \frac{1}{x} dx = \ln 4$, which uses only the four algebraic operations. a) Write the expression you would use to calculate T_6 , the trapezoid rule with 6 subintervals.

All the terms need to be explicitly written, do not use f in the sum.

b) Find the error estimate for T_n in general. You will need the second derivative of $\frac{1}{x}$.

c) Estimate the error for T_6 .

d) What should n be in order for T_n to give you an error less than 10^{-4} ?

Bonus (10pts) On the interval [1,3], draw a nice big picture of any concave upward function f whose graph is above the x-axis. Then draw the straight-edge shapes whose area is represented by the trapezoid and midpoint approximations T_2 and M_2 for the integral I = $\int_{1}^{3} f(x) dx$. Put the numbers I, T₂ and M₂ in increasing order and justify this order precisely with your picture.