
Calculus 2 — Lecture notes
MAT 308, Fall 2021 — D. Ivanšić 8.1 Sequences

Definition. A sequence is an infinite list of numbers written in a definite order:

a1, a2, a3, . . . , an, . . .

an = n-th term

Notation. A sequence is denoted {an} or {an}∞n=1

Examples. The following are examples of sequences. Where a formula for the general term
of a sequence is not written, write one. Where it is written, write out several terms of the
sequence.

a) 12, 22, 32, . . .

b) 1,
1

2
,
1

3
, . . .

c) 1,−1, 1,−1, . . .

d)
{
cos

nπ

6

}∞

n=0
=

e) {n-th digit of π}∞n=1 =

f) {an}∞n=1, where a1 = 1, a2 = 1, an = an−1 + an−2

g) 1.1, 1.01, 1.001, 1.0001, . . .
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Definition. We say that the sequence {an} has a limit L and write lim
n→∞

an = L if we can

make an arbitrarily close to L by taking n sufficiently large. That is, if the numbers an get
closer and closer to L as n increases.

If lim
n→∞

an = L, we say that {an} converges (otherwise, it diverges).

lim
n→∞

an = ∞ if an can be made arbitrarily large by taking n sufficiently large. That is, if the

numbers an get larger and larger, and without bound, as n increases.

Example. Consider the sequences in the previous example. Which ones converge, and what
are their limits?

For a sequence {an}, usually an = f(n), where f is some function. For example,

an =
1

n
an =

lnn

n2
an =

n2 − 2n

2n

We can use the function f(x) to examine how an behaves.

Example. Let an =
n2 + 2n+ 3

n2 + 8n
. Examine the function f(x) =

x2 + 2x+ 3

x2 + 8x
to see if

lim
n→∞

an exists.

Theorem. If lim
x→∞

f(x) exists and an = f(n), then lim
n→∞

an = lim
x→∞

f(x)
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Example. Find the limit.

lim
n→∞

lnn

n2
=

Example. Find the limit.

lim
n→∞

cos((2n+ 1)π) =

Limits of sequences follow the same limit laws as limits of functions:

lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn lim
n→∞

c · an = c · lim
n→∞

an

lim
n→∞

(an · bn) = lim
n→∞

an · lim
n→∞

bn lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
, as long as lim

n→∞
bn ̸= 0

Squeeze Theorem. If an ≤ bn ≤ cn for all n ≥ n0 and lim
n→∞

an = lim
n→∞

cn = L, then

lim
n→∞

bn = L.

Example. lim
n→∞

2n

n!
= 0
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Theorem. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Example. lim
n→∞

(−1)n

n
= 0

Example.

lim
n→∞

rn =


0 if |r| < 1
1 if r = 1
∞ if r > 1
does not exist, if r ≤ −1
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Definition.
A sequence is called increasing if an ≤ an+1 for all n, that is a1 ≤ a2 ≤ a3 ≤ . . .
A sequence is called decreasing if an ≥ an+1 for all n, that is a1 ≥ a2 ≥ a3 ≥ . . .
A sequence is called monotonic if it is either increasing or decreasing.

Example. {n2} is and

{
1

n

}
is .

Example. Show that the sequence

{
n2

n3 + 1

}
is decreasing for n ≥ 2.
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Definition.
A sequence is called bounded above if there exists a number M such that an ≤ M for all n.
A sequence is called bounded below if there exists a number m such that m ≤ an for all n.
A sequence is called bounded if it is bounded above and below.

Example. Discuss boundedness of the following sequences:{
n2

n3 + 1

}
{(−1)n} {n2}

Theorem. Every bounded monotonic sequence is convergent.

Example. Show that the sequence below is monotonic and bounded, hence has a limit.

an =
3

4
· 15
16

· 35
36

· · · · · 4n
2 − 1

4n2

It turns out that lim
n→∞

an =
2

π
.
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We wish to make sense of an infinite sum of numbers:

a1 + a2 + a3 + · · ·+ an + . . .

Examples. The following are examples of infinite sums.

a) 1 + 1 + 1 + · · · =
∞∑
n=1

1

b) 1 +
1

2
+

1

3
+ · · ·+ 1

n
+ · · · =

∞∑
n=1

1

n

c) 1 +
1

22
+

1

32
+ · · ·+ 1

n2
+ · · · =

∞∑
n=1

1

n2

d) 1− 1 + 1− 1 + · · · =
∞∑
n=0

(−1)n

e)
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)
+ · · · =

∞∑
n=1

1

n(n+ 1)

f) 1 +
1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
+ · · · =

∞∑
n=0

1

2n

To understand what infinite sums should mean, recall an improper integral:∫ ∞

1

1

x2
dx = lim

t→∞

∫ t

a

1

x2
dx

In a similar spirit, we may define:

1 +
1

2
+

1

3
+ · · · = lim

n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
a1 + a2 + a3 + · · · = lim

n→∞
(a1 + a2 + · · ·+ an)
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Definition. An infinite sum a1 + a2 + a3 + · · · + an + . . . is called a series and denoted
∞∑
n=1

an or
∑

an. The number an is called the n-th term of the series.

We form the sequence of partial sums sn by adding the first n terms:

s1 = a1
s2 = a1 + a2
s3 = a1 + a2 + a3

...
sn = a1 + a2 + · · ·+ an

If the sequence {sn} is convergent and lim
n→∞

sn = s, we say the series
∑

an is convergent,

write
∞∑
n=1

an = s and call s the sum of the series. If {sn} is divergent, we say the series∑
an is divergent. (Verbs: converges, diverges.)

Examples. Are the series from the previous examples convergent?

a) 1 + 1 + 1 + · · · =
∞∑
n=1

1

b) 1 +
1

2
+

1

3
+ · · ·+ 1

n
+ · · · =

∞∑
n=1

1

n
Check numerical evidence.

c) 1 +
1

22
+

1

32
+ · · ·+ 1

n2
+ · · · =

∞∑
n=1

1

n2
Check numerical evidence.
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d) 1− 1 + 1− 1 + · · · =
∞∑
n=0

(−1)n

e)
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)
+ · · · =

∞∑
n=1

1

n(n+ 1)

f) 1 +
1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
+ · · · =

∞∑
n=0

1

2n

This is an example of a geometric series, one of form

1 + r + r2 + r3 + · · · =
∞∑
n=0

rn, or, more generally, a+ ar + ar2 + ar3 + · · · =
∞∑
n=0

arn

To deal with a geometric series, we first need a fact:

Proposition. 1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
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Theorem. The geometric series 1 + r + r2 + r3 + · · · =
∞∑
n=0

rn converges when |r| < 1 and

its sum is
1

1− r
, and diverges when |r| ≥ 1. More generally, when |r| < 1

∞∑
n=k

a rexponents increasing by 1 =
first term

1− r

Examples. Find the sums.

1 +
2

3
+

4

9
+

8

27
+ · · · =

5

2
+

5

4
+

5

8
+ · · · =

∞∑
n=1

(−3)n−1

22n
=
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Example. What numbers do these infinite decimal numbers represent?

0.22222 · · · =

0.99999 · · · =

Theorem. If
∑

an converges, then lim
n→∞

an = 0.

Test for Divergence. If lim
n→∞

an ̸= 0, then
∑

an diverges.

Example.
∞∑
n=1

n

n+ 1
diverges.

Note: theorem does NOT say “if lim
n→∞

an = 0 then
∑

an converges”.

For example, lim
n→∞

1

n
= 0 but

∞∑
n=1

1

n
diverges.

Example. Illustrating convergence of series
∑

an by considering whether a walker whose

n-th step size is an approaches a certain point.
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Theorem. If
∑

an and
∑

bn are convergent, so are the series
∑

(an + bn),
∑

(an − bn)

and
∑

can and their sums are

∞∑
n=1

(an ± bn) =
∞∑
n=1

an ±
∞∑
n=1

bn

∞∑
n=1

can = c

∞∑
n=1

an

This follows from limit laws for sequences, because sums of series are limits of sequences of
partial sums.

Example. If
∑

an converges and
∑

bn diverges, what can we say about convergence of∑
(an + bn)?
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8.3 The Integral and

Comparison Tests

In this section we consider series with positive terms
∑

an (so an > 0 for every n).

Note that in this case
∑

an either converges, or
∑

an = ∞.

Example. The sum
∞∑
n=1

1

n
can be interpreted as sum of areas of certain rectangles and

compared to area under the function f(x) =
1

x
.

Example. The sum
∞∑
n=1

1

n2
can be interpreted as sum of areas of certain rectangles and

compared to area under the function f(x) =
1

x2
.

These examples illustrate a general fact connecting
∑

f(n) and

∫ ∞

1

f(x) dx.
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Theorem (The Integral Test). Let f be a continuous, decreasing and positive function
on [1,∞) and let an = f(n). Then

1) If

∫ ∞

1

f(x) dx converges, then
∑

an converges.

2) If

∫ ∞

1

f(x) dx diverges, then
∑

an diverges.

Example.

Because

∫ ∞

1

1

xp
dx

{
converges, if p > 1
diverges, if p ≤ 1

, the p-series
∑ 1

np

{
converges, if p > 1
diverges, if p ≤ 1

Example. Determine whether the series converge: a)
∑ 1

n
√
n

b)
∑ 1

3
√
n

The integral test compared the sum of a series to an area under a function. We can also
compare a series to another one, whose convergence is known, to help us determine the
convergence of the first series.

Example. Consider
∞∑
n=1

√
n+ 1

n
.
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Example. Consider
∞∑
n=1

1

3n + 7
.

Reasoning as in the above two examples, one can prove:

Theorem (The Comparison Test). Let
∑

an and
∑

bn be series with positive terms.

Then
1) If

∑
bn converges and an ≤ bn for all n, then

∑
an converges.

2) If
∑

bn diverges and an ≥ bn for all n, then
∑

an diverges.

Example. How to handle something like
∑ n− 3

2n2 − n
? Try comparison:
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That did not work. Try another idea: isolate dominant terms from the general term of the
series.

Theorem (The Limit Comparison Test). Let
∑

an and
∑

bn be series with positive

terms, and suppose

lim
n→∞

an
bn

= c,

where c > 0 is a finite number. Then either both series converge or both diverge. That is,∑
an converges if and only if

∑
bn converges.
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Example. Determine if
∞∑
n=1

3n3 + 4n− 1

n6 − n2 + 1
converges.

Example. Determine if
∞∑
n=1

√
n4 + n2

3n
5
2 + n

converges.
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Example. Here are some examples of alternating series.

1− 1

2
+

1

3
− 1

4
+ · · · =

∞∑
n=1

(−1)n−1 1

n

2

3
− 4

9
+

8

27
− 16

81
+ · · · =

∞∑
n=1

−
(
−2

3

)n

Definition. A series of type b1 − b2 + b3 − b4 + · · · =
∞∑
n=1

(−1)n−1bn, where bn > 0 for all n,

is called an alternating series.

Theorem (The Alternating Series Test). If the alternating series
∞∑
n=1

(−1)n−1bn satisfies

1) {bn} is decreasing 2) lim
n→∞

bn = 0

then the series is convergent.

Proof.

Alternating series estimate: |Rn| = |s− sn| ≤ bn+1.
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Example. Show
∞∑
n=1

(−1)n−1 1

n
converges and find the accuracy of s10000 in estimating the

sum of the series.

Example. Show 1 − 1

2!
+

1

4!
− 1

6!
+ · · · =

∞∑
n=0

(−1)n
1

(2n)!
converges. How many terms are

needed so that sn approximates the sum with accuracy 10−4?
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Given any series
∑

an, we can consider the corresponding series of absolute values:

|a1|+ |a2|+ |a3|+ · · · =
∞∑
n=1

|an|

Definition. A series
∑

an is absolutely convergent if the series of absolute values
∑

|an|
converges.

Example. Determine whether the series converge absolutely:

a)
∞∑
n=1

(−1)n−1 1

n3
b)

∞∑
n=1

(−1)n−1 1

n

Definition. A series
∑

an is conditionally convergent if it is convergent, but not absolutely
convergent.

Theorem. If a series
∑

an is absolutely convergent, then it is convergent.

Proof.

Example. Show the series
∞∑
n=1

sin(n2 + n)

n2
is convergent.
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Theorem (The Ratio Test). Let
∑

an be a series.

If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 then
∑

an is absolutely convergent.

If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1 then
∑

an is divergent.

Example. Check the following series for convergence using the ratio test.

∞∑
n=1

n

2n

∞∑
n=0

(−1)n
10n

n!

∞∑
n=1

n

n3 + 1
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Theorem (The Root Test). Let
∑

an be a series.

If lim
n→∞

n
√

|an| < 1 then
∑

an is absolutely convergent.

If lim
n→∞

n
√

|an| > 1 then
∑

an is divergent.

Example. Check the following series for convergence using the ratio test.

∞∑
n=0

(−1)n
n2

4n

∞∑
n=1

10n

n2 + 17n

Useful limits for the root test:

lim
n→∞

n
√
a = 1 lim

n→∞
n
√
n = 1 lim

n→∞
n
√

P (n) = 1, where P (x) is a polynomial
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Like the ratio test, the proof of the root test is essentially a comparison to the geometric
series.
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Definition. A power series is a series of form

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · ·+ cnx
n + . . . (centered at 0)

or, more generally,

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + . . . (centered at a)

Whether the series converges or not depends on the x we choose; for the x’s for which the
series converges we get a function

f(x) =
∞∑
n=0

cn(x− a)n

Note: the partial sum of a power series is a polynomial.

Example. Which function is given by the series
∞∑
n=0

xn = 1 + x+ x2 + . . . ?
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Example. For which x does
∞∑
n=1

xn

n5n
converge?

Example. Find the interval of convergence for
∞∑
n=2

(lnn)nxn.
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Example. Find the interval of convergence for
∞∑
n=0

xn

n!
.

Theorem. For the power series
∞∑
n=0

cn(x− a)n there are three possibilities:

(i) the series converges only when x = a.
(ii) the series converges for all x.
(iii) there is a number R (“radius of convergence”) such that

the series converges if |x− a| < R
the series diverges if |x− a| > R.

(When |x− a| = R, that is, when x = a±R, we have to test separately.)
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Example. Find the interval of convergence for
∞∑
n=0

(x+ 1)n

4n+3
.

Ch.8-27



Calculus 2 — Lecture notes
MAT 308, Fall 2021 — D. Ivanšić

8.6 Representing Functions

as Power Series

Example. Use the geometric series sum

1 + x+ x2 + · · · = 1

1− x

to find power series expansions of other functions.

Example. Find the power series expansion for f(x) =
1

3− x
and g(x) =

x4

3− x
. State the

interval of convergence.

Ch.8-28



Example. Find the power series expansion for f(x) =
1

1 + x2
. State the interval of conver-

gence.

Series can be integrated or differentiated term-by-term.

Theorem. Suppose the power series
∞∑
n=0

cn(x− a)n has a radius of convergence R > 0.

Then the function

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · · =
∞∑
n=0

cn(x− a)n

is continuous and differentiable on the interval (a−R, a+R) and:

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · · =
∞∑
n=1

ncn(x− a)n−1

∫
f(x) dx = C + c0(x− a) + c1

(x− a)2

2
+ c2

(x− a)3

3
+ · · · = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1

The radii of convergence for series for f ′ and
∫
f are also R.
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Example. Differentiate and integrate the power series expansion to get power series expan-
sions for other functions.

1

1 + x
=

1

1− (−x)
= 1− x+ x2 − x3 + · · · =

∞∑
n=0

(−1)nxn
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Example. Integrate the power series expansion to get something interesting.

1

1 + x2
=

1

1− (−x2)
= 1− x2 + x4 − x6 + · · · =

∞∑
n=0

(−1)nxn
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8.7 Taylor and MacLaurin

Series

Suppose f(x) has a power series expansion valid on for x satisfying |x− a| < R.

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + c4(x− a)4 + . . .

Calculate f ′(a), f ′′(a), f ′′′(a), . . .
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Theorem. If f has a power series representation for x satisfying |x − a| < R, f(x) =
∞∑
n=0

cn(x− a)n, then cn =
f (n)(a)

n!
. Thus, if f has a power series expansion around a, then

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · =

∞∑
n=0

f (n)(a)

n!
(x− a)n

Example. Assume ex has a power series expansion at 0. Find its power series expansion.

Example. Assume sin x has a power series expansion at 0. Find its power series expansion.
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Example. Differentiate the power series expansion of sin x to get the power series expansion
of cos x.

Note.
Even functions only have even exponents in their power series expansion at 0.
Odd functions only have odd exponents in their power series expansion at 0.

If a function can be differentiated infinitely many times, we can always form a power series
just by writing

∞∑
n=0

f (n)(a)

n!
(x− a)n

This is called the Taylor series of f at a. If a = 0, it is called the MacLaurin series.

The main question is whether the series converges to the function (usually does),
and on which interval.

Definition. The n-th Taylor polynomial of f at a is the n-th partial sum of the Taylor
series, namely:

Tn(x) = f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+

f ′′′(a)

3!
(x−a)3+· · ·+f (n)(a)

n!
(x−a)n =

n∑
i=0

f (i)(a)

i!
(x−a)i

Definition. Let Rn(x) = f(x)− Tn(x), so that f(x) = Tn(x) +Rn(x). If the function has a
power series expansion, then Rn(x) is the n-th remainder of the Taylor series, just like Tn(x)
is the n-th partial sum. If lim

n→∞
Rn(x) = 0 then the series converges to f(x).
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Example. Draw T2(x), T4(x), T6(x) and T8(x) for cos x.
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Taylor’s formula. If f has n + 1 derivatives in an interval I containing a, then for any x
in I there is a number z between a and x such that

Rn(x) =
f (n+1)(z)

(n+ 1)!
(x− a)n+1

(Note the remainder is like the first ignored term in the Taylor series except with a z in place
of a.)

Note. This sounds like the Mean Value Theorem. Actually, for n = 0, this is the Mean
Value Theorem.

Estimate of Rn(x). If |f (n+1)(x)| < M for all x in I, then for any x in I

|Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1

Note. Useful limit : lim
n→∞

rn

n!
= 0, to help show lim

n→∞
Rn(x) = 0.
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Example. Show that sin x is the sum of its Taylor series.

Example. Use series to show lim
x→0

sin x

x
= 1.
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Example. Use series to estimate sin 20◦ with accuracy 10−6.

Example. Use series to estimate

∫ 1

0

cos x2 dx with accuracy 10−6.
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Example. Find the MacLaurin series for f(x) = (1+x)k and state its interval of convergence.

The Binomial Series. For any number k and |x| < 1,

(1 + x)k =
∞∑
n=0

(
k

n

)
xn = 1 + kx+

k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + . . . ,

where

(
k

n

)
=

k(k − 1) · · · · · (k − (n− 1))

n!
.
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Example. Use known series to find the first five terms of the power series representation of

f(x) =
ex

1 + x
.
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8.8 Applications of Taylor

Polynomials

Recall that the Taylor polynomial of f at a is given as

Tn(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n =

n∑
i=0

f (i)(a)

i!
(x− a)i

It is useful in approximating functions.

Note. For the Taylor polynomial Tn(x) at a,

Tn(a) = f(a), T ′
n(a) = f ′(a), T ′′

n (a) = f ′′(a), T ′′′
n (a) = f ′′′(a), . . . , T (n)

n (a) = f (n)(a),

so it is not surprising that it approximates the function f well near a.

Example. Let f(x) =
√
x.

a) Find T4(x) for this function at a = 9.
b) Write the expression for the error R4(x), and estimate it on the intervals [7, 11] and [8, 10].
c) Graph R4(x) and verify your findings from b).
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Example. Let f(x) = sin x.
a) Write T5(x) for this function at a = 0.
b) What is the accuracy or T5

(
1
2

)
?

c) What is the accuracy or T5(x) on the interval
[
−π

2
, π
2

]
?

d) For which n will Tn(x) approximate sin x with accuracy 10−5 on the interval
[
−π

2
, π
2

]
?
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