Calculus 2 - Lecture notes

 MAT 308, Fall 2021 - D. Ivanšić
8.1 Sequences

Definition. A sequence is an infinite list of numbers written in a definite order:

$$
\begin{gathered}
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots \\
a_{n}=n \text {-th term }
\end{gathered}
$$

Notation. A sequence is denoted $\left\{a_{n}\right\}$ or $\left\{a_{n}\right\}_{n=1}^{\infty}$

Examples. The following are examples of sequences. Where a formula for the general term of a sequence is not written, write one. Where it is written, write out several terms of the sequence.
a) $1^{2}, 2^{2}, 3^{2}, \ldots$
b) $1, \frac{1}{2}, \frac{1}{3}, \ldots$
c) $1,-1,1,-1, \ldots$
d) $\left\{\cos \frac{n \pi}{6}\right\}_{n=0}^{\infty}=$
e) $\{n \text {-th digit of } \pi\}_{n=1}^{\infty}=$
f) $\left\{a_{n}\right\}_{n=1}^{\infty}$, where $a_{1}=1, a_{2}=1, a_{n}=a_{n-1}+a_{n-2}$
g) $1.1,1.01,1.001,1.0001, \ldots$

Definition. We say that the sequence $\left\{a_{n}\right\}$ has a limit L and write $\lim _{n \rightarrow \infty} a_{n}=L$ if we can make a_{n} arbitrarily close to L by taking n sufficiently large. That is, if the numbers a_{n} get closer and closer to L as n increases.

If $\lim _{n \rightarrow \infty} a_{n}=L$, we say that $\left\{a_{n}\right\}$ converges (otherwise, it diverges).
$\lim _{n \rightarrow \infty} a_{n}=\infty$ if a_{n} can be made arbitrarily large by taking n sufficiently large. That is, if the numbers a_{n} get larger and larger, and without bound, as n increases.

Example. Consider the sequences in the previous example. Which ones converge, and what are their limits?

For a sequence $\left\{a_{n}\right\}$, usually $a_{n}=f(n)$, where f is some function. For example,

$$
a_{n}=\frac{1}{n} \quad a_{n}=\frac{\ln n}{n^{2}} \quad a_{n}=\frac{n^{2}-2 n}{2^{n}}
$$

We can use the function $f(x)$ to examine how a_{n} behaves.

Example. Let $a_{n}=\frac{n^{2}+2 n+3}{n^{2}+8 n}$. Examine the function $f(x)=\frac{x^{2}+2 x+3}{x^{2}+8 x}$ to see if $\lim _{n \rightarrow \infty} a_{n}$ exists.

Theorem. If $\lim _{x \rightarrow \infty} f(x)$ exists and $a_{n}=f(n)$, then $\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)$

Example. Find the limit.
$\lim _{n \rightarrow \infty} \frac{\ln n}{n^{2}}=$

Example. Find the limit.
$\lim _{n \rightarrow \infty} \cos ((2 n+1) \pi)=$

Limits of sequences follow the same limit laws as limits of functions:
$\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}$

$$
\lim _{n \rightarrow \infty} c \cdot a_{n}=c \cdot \lim _{n \rightarrow \infty} a_{n}
$$

$\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n} \quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$, as long as $\lim _{n \rightarrow \infty} b_{n} \neq 0$

Squeeze Theorem. If $a_{n} \leq b_{n} \leq c_{n}$ for all $n \geq n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

Example. $\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0$

Theorem. If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Example. $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0$

Example.

$\lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{l}0 \quad \text { if }|r|<1 \\ 1 \quad \text { if } r=1 \\ \infty \quad \text { if } r>1 \\ \text { does not exist, if } r \leq-1\end{array}\right.$

Definition.

A sequence is called increasing if $a_{n} \leq a_{n+1}$ for all n, that is $a_{1} \leq a_{2} \leq a_{3} \leq \ldots$ A sequence is called decreasing if $a_{n} \geq a_{n+1}$ for all n, that is $a_{1} \geq a_{2} \geq a_{3} \geq \ldots$ A sequence is called monotonic if it is either increasing or decreasing.

Example. $\left\{n^{2}\right\}$ is \ldots and $\left\{\frac{1}{n}\right\}$ is

Example. Show that the sequence $\left\{\frac{n^{2}}{n^{3}+1}\right\}$ is decreasing for $n \geq 2$.

Definition.

A sequence is called bounded above if there exists a number M such that $a_{n} \leq M$ for all n. A sequence is called bounded below if there exists a number m such that $m \leq a_{n}$ for all n. A sequence is called bounded if it is bounded above and below.

Example. Discuss boundedness of the following sequences:
$\left\{\frac{n^{2}}{n^{3}+1}\right\}$
$\left\{(-1)^{n}\right\} \quad\left\{n^{2}\right\}$

Theorem. Every bounded monotonic sequence is convergent.

Example. Show that the sequence below is monotonic and bounded, hence has a limit.
$a_{n}=\frac{3}{4} \cdot \frac{15}{16} \cdot \frac{35}{36} \cdots \cdots \cdot \frac{4 n^{2}-1}{4 n^{2}}$

It turns out that $\lim _{n \rightarrow \infty} a_{n}=\frac{2}{\pi}$.

Calculus 2 - Lecture notes MAT 308, Fall 2021 - D. Ivanšić

8.2 Series

We wish to make sense of an infinite sum of numbers:

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\ldots
$$

Examples. The following are examples of infinite sums.
a) $1+1+1+\cdots=\sum_{n=1}^{\infty} 1$
b) $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n}$
c) $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
d) $1-1+1-1+\cdots=\sum_{n=0}^{\infty}(-1)^{n}$
e) $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
f) $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}+\cdots=\sum_{n=0}^{\infty} \frac{1}{2^{n}}$

To understand what infinite sums should mean, recall an improper integral:

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty} \int_{a}^{t} \frac{1}{x^{2}} d x
$$

In a similar spirit, we may define:

$$
\begin{gathered}
1+\frac{1}{2}+\frac{1}{3}+\cdots=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right) \\
a_{1}+a_{2}+a_{3}+\cdots=\lim _{n \rightarrow \infty}\left(a_{1}+a_{2}+\cdots+a_{n}\right)
\end{gathered}
$$

Definition. An infinite sum $a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\ldots$ is called a series and denoted $\sum_{n=1}^{\infty} a_{n}$ or $\sum a_{n}$. The number a_{n} is called the n-th term of the series.

We form the sequence of partial sums s_{n} by adding the first n terms:

$$
\begin{aligned}
s_{1} & =a_{1} \\
s_{2} & =a_{1}+a_{2} \\
s_{3} & =a_{1}+a_{2}+a_{3} \\
& \vdots \\
s_{n} & =a_{1}+a_{2}+\cdots+a_{n}
\end{aligned}
$$

If the sequence $\left\{s_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} s_{n}=s$, we say the series $\sum a_{n}$ is convergent, write $\sum_{n=1}^{\infty} a_{n}=s$ and call s the sum of the series. If $\left\{s_{n}\right\}$ is divergent, we say the series $\sum a_{n}$ is divergent. (Verbs: converges, diverges.)

Examples. Are the series from the previous examples convergent?
a) $1+1+1+\cdots=\sum_{n=1}^{\infty} 1$
b) $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n} \quad$ Check numerical evidence.
c) $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad$ Check numerical evidence.
d) $1-1+1-1+\cdots=\sum_{n=0}^{\infty}(-1)^{n}$
e) $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
f) $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}+\cdots=\sum_{n=0}^{\infty} \frac{1}{2^{n}}$

This is an example of a geometric series, one of form

$$
1+r+r^{2}+r^{3}+\cdots=\sum_{n=0}^{\infty} r^{n}, \text { or, more generally, } a+a r+a r^{2}+a r^{3}+\cdots=\sum_{n=0}^{\infty} a r^{n}
$$

To deal with a geometric series, we first need a fact:
Proposition. $1+r+r^{2}+\cdots+r^{n}=\frac{1-r^{n+1}}{1-r}$

Theorem. The geometric series $1+r+r^{2}+r^{3}+\cdots=\sum_{n=0}^{\infty} r^{n}$ converges when $|r|<1$ and its sum is $\frac{1}{1-r}$, and diverges when $|r| \geq 1$. More generally, when $|r|<1$

$$
\sum_{n=k}^{\infty} a r^{\text {exponents increasing by } 1}=\frac{\text { first term }}{1-r}
$$

Examples. Find the sums.
$1+\frac{2}{3}+\frac{4}{9}+\frac{8}{27}+\cdots=$
$\frac{5}{2}+\frac{5}{4}+\frac{5}{8}+\cdots=$
$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{2^{2 n}}=$

Example. What numbers do these infinite decimal numbers represent?
$0.22222 \cdots=$
$0.99999 \cdots=$

Theorem. If $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Test for Divergence. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum a_{n}$ diverges.

Example. $\sum_{n=1}^{\infty} \frac{n}{n+1}$ diverges.

Note: theorem does NOT say "if $\lim _{n \rightarrow \infty} a_{n}=0$ then $\sum a_{n}$ converges".
For example, $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ but $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Example. Illustrating convergence of series $\sum a_{n}$ by considering whether a walker whose n-th step size is a_{n} approaches a certain point.

Theorem. If $\sum a_{n}$ and $\sum b_{n}$ are convergent, so are the series $\sum\left(a_{n}+b_{n}\right), \sum\left(a_{n}-b_{n}\right)$ and $\sum c a_{n}$ and their sums are

$$
\sum_{n=1}^{\infty}\left(a_{n} \pm b_{n}\right)=\sum_{n=1}^{\infty} a_{n} \pm \sum_{n=1}^{\infty} b_{n} \quad \sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}
$$

This follows from limit laws for sequences, because sums of series are limits of sequences of partial sums.

Example. If $\sum a_{n}$ converges and $\sum b_{n}$ diverges, what can we say about convergence of $\sum\left(a_{n}+b_{n}\right) ?$

Calculus 2 - Lecture notes MAT 308, Fall 2021 - D. Ivanšić

8.3 The Integral and Comparison Tests

In this section we consider series with positive terms $\sum a_{n}$ (so $a_{n}>0$ for every n). Note that in this case $\sum a_{n}$ either converges, or $\sum a_{n}=\infty$.

Example. The sum $\sum_{n=1}^{\infty} \frac{1}{n}$ can be interpreted as sum of areas of certain rectangles and compared to area under the function $f(x)=\frac{1}{x}$.

Example. The sum $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ can be interpreted as sum of areas of certain rectangles and compared to area under the function $f(x)=\frac{1}{x^{2}}$.

These examples illustrate a general fact connecting $\sum f(n)$ and $\int_{1}^{\infty} f(x) d x$.

Theorem (The Integral Test). Let f be a continuous, decreasing and positive function on $[1, \infty)$ and let $a_{n}=f(n)$. Then

1) If $\int_{1}^{\infty} f(x) d x$ converges, then $\sum a_{n}$ converges.
2) If $\int_{1}^{\infty} f(x) d x$ diverges, then $\sum a_{n}$ diverges.

Example.

Because $\int_{1}^{\infty} \frac{1}{x^{p}} d x\left\{\begin{array}{l}\text { converges, if } p>1 \\ \text { diverges, if } p \leq 1\end{array}\right.$, the p-series $\sum \frac{1}{n^{p}}\left\{\begin{array}{l}\text { converges, if } p>1 \\ \text { diverges, if } p \leq 1\end{array}\right.$

Example. Determine whether the series converge: a) $\sum \frac{1}{n \sqrt{n}} \quad$ b) $\sum \frac{1}{\sqrt[3]{n}}$

The integral test compared the sum of a series to an area under a function. We can also compare a series to another one, whose convergence is known, to help us determine the convergence of the first series.

Example. Consider $\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n}$.

Example. Consider $\sum_{n=1}^{\infty} \frac{1}{3^{n}+7}$.

Reasoning as in the above two examples, one can prove:
Theorem (The Comparison Test). Let $\sum a_{n}$ and $\sum b_{n}$ be series with positive terms.
Then

1) If $\sum b_{n}$ converges and $a_{n} \leq b_{n}$ for all n, then $\sum a_{n}$ converges.
2) If $\sum b_{n}$ diverges and $a_{n} \geq b_{n}$ for all n, then $\sum a_{n}$ diverges.

Example. How to handle something like $\sum \frac{n-3}{2 n^{2}-n}$? Try comparison:

That did not work. Try another idea: isolate dominant terms from the general term of the series.

Theorem (The Limit Comparison Test). Let $\sum a_{n}$ and $\sum b_{n}$ be series with positive terms, and suppose

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

where $c>0$ is a finite number. Then either both series converge or both diverge. That is, $\sum a_{n}$ converges if and only if $\sum b_{n}$ converges.

Example. Determine if $\sum_{n=1}^{\infty} \frac{3 n^{3}+4 n-1}{n^{6}-n^{2}+1}$ converges.

Example. Determine if $\sum_{n=1}^{\infty} \frac{\sqrt{n^{4}+n^{2}}}{3 n^{\frac{5}{2}}+n}$ converges.

Calculus 2 - Lecture notes

 MAT 308, Fall 2021 - D. Ivanšić
8.4 Other Convergence Tests

Example. Here are some examples of alternating series.
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$
$\frac{2}{3}-\frac{4}{9}+\frac{8}{27}-\frac{16}{81}+\cdots=\sum_{n=1}^{\infty}-\left(-\frac{2}{3}\right)^{n}$
Definition. A series of type $b_{1}-b_{2}+b_{3}-b_{4}+\cdots=\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$, where $b_{n}>0$ for all n, is called an alternating series.

Theorem (The Alternating Series Test). If the alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ satisfies

1) $\left\{b_{n}\right\}$ is decreasing
2) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series is convergent.
Proof.

Alternating series estimate: $\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}$.

Example. Show $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$ converges and find the accuracy of s_{10000} in estimating the sum of the series.

Example. Show $1-\frac{1}{2!}+\frac{1}{4!}-\frac{1}{6!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!}$ converges. How many terms are needed so that s_{n} approximates the sum with accuracy 10^{-4} ?

Given any series $\sum a_{n}$, we can consider the corresponding series of absolute values:

$$
\left|a_{1}\right|+\left|a_{2}\right|+\left|a_{3}\right|+\cdots=\sum_{n=1}^{\infty}\left|a_{n}\right|
$$

Definition. A series $\sum a_{n}$ is absolutely convergent if the series of absolute values $\sum\left|a_{n}\right|$ converges.

Example. Determine whether the series converge absolutely:
a) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{3}}$
b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$

Definition. A series $\sum a_{n}$ is conditionally convergent if it is convergent, but not absolutely convergent.

Theorem. If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.
Proof.

Example. Show the series $\sum_{n=1}^{\infty} \frac{\sin \left(n^{2}+n\right)}{n^{2}}$ is convergent.

Theorem (The Ratio Test). Let $\sum a_{n}$ be a series.
If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$ then $\sum a_{n}$ is absolutely convergent.
If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$ then $\sum a_{n}$ is divergent.

Example. Check the following series for convergence using the ratio test.
$\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
$\sum_{n=0}^{\infty}(-1)^{n} \frac{10^{n}}{n!}$
$\sum_{n=1}^{\infty} \frac{n}{n^{3}+1}$

Theorem (The Root Test). Let $\sum a_{n}$ be a series.
If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1$ then $\sum a_{n}$ is absolutely convergent.
If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}>1$ then $\sum a_{n}$ is divergent.

Example. Check the following series for convergence using the ratio test.
$\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{2}}{4^{n}}$
$\sum_{n=1}^{\infty} \frac{10^{n}}{n^{2}+17 n}$

Useful limits for the root test:
$\lim _{n \rightarrow \infty} \sqrt[n]{a}=1 \quad \lim _{n \rightarrow \infty} \sqrt[n]{n}=1 \quad \lim _{n \rightarrow \infty} \sqrt[n]{P(n)}=1$, where $P(x)$ is a polynomial

Like the ratio test, the proof of the root test is essentially a comparison to the geometric series.

Calculus 2 - Lecture notes MAT 308, Fall 2021 - D. Ivanšić

8.5 Power Series

Definition. A power series is a series of form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}+\ldots(\text { centered at } 0)
$$

or, more generally,

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n}+\ldots(\text { centered at } a)
$$

Whether the series converges or not depends on the x we choose; for the x 's for which the series converges we get a function

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

Note: the partial sum of a power series is a polynomial.

Example. Which function is given by the series $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\ldots$?

Example. For which x does $\sum_{n=1}^{\infty} \frac{x^{n}}{n 5^{n}}$ converge?

Example. Find the interval of convergence for $\sum_{n=2}^{\infty}(\ln n)^{n} x^{n}$.

Example. Find the interval of convergence for $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.

Theorem. For the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are three possibilities:
(i) the series converges only when $x=a$.
(ii) the series converges for all x.
(iii) there is a number R ("radius of convergence") such that the series converges if $|x-a|<R$ the series diverges if $|x-a|>R$.
(When $|x-a|=R$, that is, when $x=a \pm R$, we have to test separately.)

Example. Find the interval of convergence for $\sum_{n=0}^{\infty} \frac{(x+1)^{n}}{4^{n+3}}$.

Calculus 2 - Lecture notes MAT 308, Fall 2021 - D. Ivanšić

8.6 Representing Functions as Power Series

Example. Use the geometric series sum

$$
1+x+x^{2}+\cdots=\frac{1}{1-x}
$$

to find power series expansions of other functions.
Example. Find the power series expansion for $f(x)=\frac{1}{3-x}$ and $g(x)=\frac{x^{4}}{3-x}$. State the interval of convergence.

Example. Find the power series expansion for $f(x)=\frac{1}{1+x^{2}}$. State the interval of conver-
gence. gence.

Series can be integrated or differentiated term-by-term.

Theorem. Suppose the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has a radius of convergence $R>0$. Then the function

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

is continuous and differentiable on the interval $(a-R, a+R)$ and:

$$
\begin{gathered}
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \\
\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\cdots=C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
\end{gathered}
$$

The radii of convergence for series for f^{\prime} and $\int f$ are also R.

Example. Differentiate and integrate the power series expansion to get power series expansions for other functions.
$\frac{1}{1+x}=\frac{1}{1-(-x)}=1-x+x^{2}-x^{3}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$

Example. Integrate the power series expansion to get something interesting.
$\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=1-x^{2}+x^{4}-x^{6}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$

Calculus 2 - Lecture notes
MAT 308, Fall 2021 - D. Ivanšić

8.7 Taylor and MacLaurin Series

Suppose $f(x)$ has a power series expansion valid on for x satisfying $|x-a|<R$.

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+\ldots
$$

Calculate $f^{\prime}(a), f^{\prime \prime}(a), f^{\prime \prime \prime}(a), \ldots$

Theorem. If f has a power series representation for x satisfying $|x-a|<R, f(x)=$ $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, then $c_{n}=\frac{f^{(n)}(a)}{n!}$. Thus, if f has a power series expansion around a, then

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Example. Assume e^{x} has a power series expansion at 0 . Find its power series expansion.

Example. Assume $\sin x$ has a power series expansion at 0 . Find its power series expansion.

Example. Differentiate the power series expansion of $\sin x$ to get the power series expansion of $\cos x$.

Note.

Even functions only have even exponents in their power series expansion at 0 . Odd functions only have odd exponents in their power series expansion at 0.

If a function can be differentiated infinitely many times, we can always form a power series just by writing

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

This is called the Taylor series of f at a. If $a=0$, it is called the MacLaurin series.
The main question is whether the series converges to the function (usually does), and on which interval.

Definition. The n-th Taylor polynomial of f at a is the n-th partial sum of the Taylor series, namely:
$T_{n}(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}$

Definition. Let $R_{n}(x)=f(x)-T_{n}(x)$, so that $f(x)=T_{n}(x)+R_{n}(x)$. If the function has a power series expansion, then $R_{n}(x)$ is the n-th remainder of the Taylor series, just like $T_{n}(x)$ is the n-th partial sum. If $\lim _{n \rightarrow \infty} R_{n}(x)=0$ then the series converges to $f(x)$.

Example. Draw $T_{2}(x), T_{4}(x), T_{6}(x)$ and $T_{8}(x)$ for $\cos x$.

Taylor's formula. If f has $n+1$ derivatives in an interval I containing a, then for any x in I there is a number z between a and x such that

$$
R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-a)^{n+1}
$$

(Note the remainder is like the first ignored term in the Taylor series except with a z in place of a.)

Note. This sounds like the Mean Value Theorem. Actually, for $n=0$, this is the Mean Value Theorem.

Estimate of $R_{n}(x)$. If $\left|f^{(n+1)}(x)\right|<M$ for all x in I, then for any x in I

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

Note. Useful limit : $\lim _{n \rightarrow \infty} \frac{r^{n}}{n!}=0$, to help show $\lim _{n \rightarrow \infty} R_{n}(x)=0$.

Example. Show that $\sin x$ is the sum of its Taylor series.

Example. Use series to show $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

Example. Use series to estimate $\sin 20^{\circ}$ with accuracy 10^{-6}.

Example. Use series to estimate $\int_{0}^{1} \cos x^{2} d x$ with accuracy 10^{-6}.

Example. Find the MacLaurin series for $f(x)=(1+x)^{k}$ and state its interval of convergence.

The Binomial Series. For any number k and $|x|<1$,

$$
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\ldots,
$$

where $\binom{k}{n}=\frac{k(k-1) \cdots \cdots(k-(n-1))}{n!}$.

Example. Use known series to find the first five terms of the power series representation of $f(x)=\frac{e^{x}}{1+x}$.

Calculus 2 - Lecture notes MAT 308, Fall 2021 - D. Ivanšić

8.8 Applications of Taylor
 Polynomials

Recall that the Taylor polynomial of f at a is given as

$$
T_{n}(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}
$$

It is useful in approximating functions.
Note. For the Taylor polynomial $T_{n}(x)$ at a,

$$
T_{n}(a)=f(a), T_{n}^{\prime}(a)=f^{\prime}(a), T_{n}^{\prime \prime}(a)=f^{\prime \prime}(a), T_{n}^{\prime \prime \prime}(a)=f^{\prime \prime \prime}(a), \ldots, T_{n}^{(n)}(a)=f^{(n)}(a)
$$

so it is not surprising that it approximates the function f well near a.
Example. Let $f(x)=\sqrt{x}$.
a) Find $T_{4}(x)$ for this function at $a=9$.
b) Write the expression for the error $R_{4}(x)$, and estimate it on the intervals $[7,11]$ and $[8,10]$.
c) Graph $R_{4}(x)$ and verify your findings from b).

Example. Let $f(x)=\sin x$.
a) Write $T_{5}(x)$ for this function at $a=0$.
b) What is the accuracy or $T_{5}\left(\frac{1}{2}\right)$?
c) What is the accuracy or $T_{5}(x)$ on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$?
d) For which n will $T_{n}(x)$ approximate $\sin x$ with accuracy 10^{-5} on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$?

Ch.8-44

