Calculus 2 - Lecture notes MAT 308, Fall 2021 - D. Ivanšić

7.1 Area Between Curves

Example. Find the area of the region between the curves $y=f(x)$ and $y=g(x)$, if $f(x) \geq g(x)$ and $a \leq x \leq b$.

If $f(x) \geq g(x)$ for all x in $[a, b]$, then the area of the region between the curves $y=f(x)$ and $y=g(x)$ is given by

$$
A=\int_{a}^{b} f(x)-g(x) d x
$$

Note: Always draw a picture first.

Example. Find the area of the region between the curves $y=x^{2}-2 x$ and $y=12-x^{2}$.

Example. Find the area of the region between the curves $y=\cos x$ and $y=\sin (2 x), x=0$ and $x=\frac{\pi}{2}$.

In general, area between two curves is $\int_{a}^{b}|f(x)-g(x)| d x$.

Calculus 2 - Lecture notes MAT 308, Fall 2021 - D. Ivanšić

7.2 Volumes

The general principle behind computing volumes:

Consider cross-sections of the solid by planes perpendicular to an axis, and let $A(x)$ be the area of the cross section corresponding to a point x on the axis.

Using areas $A(x)$ we find the approximate volume of the solid:

Then $V \approx \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x$. Making the subdivisions of $[a, b]$ smaller causes the sum to get closer to the actual volume. However, $\sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x$ is also a Riemann sum for the function $A(x)$ over the interval $[a, b]$, so the Riemann sums approach the integral $\int_{a}^{b} A(x) d x$. Therefore,

$$
\begin{gathered}
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x=\int_{a}^{b} A(x) d x, \text { so } \\
V=\int_{a}^{b} A(x) d x, \quad \text { volume }=\begin{array}{l}
\text { integral of } \\
\text { cross-sectional } \\
\text { area }
\end{array}
\end{gathered}
$$

Example. Find the volume of the solid obtained by rotating the region between $y=x^{3}$, $x=0, x=2$ and $y=0$ about the x-axis.

Example. Find the volume of the solid obtained by rotating the region bounded by $x=1$, $x=4, y=x$ and $y=x+2$ about the x-axis.

Example. Verify that the volume of a ball of radius r is $\frac{4}{3} \pi r^{3}$.

Example. Find the volume of a pyramid with a square base of side a, whose height is h, and whose vertex is directly above one of the vertices of the base.

Note: The same can be shown for a pyramid with any base: $V=\frac{1}{3} B h$.

Calculus 2 - Lecture notes MAT 308, Fall 2021 - D. Ivanšić

7.3 Volumes by Cylindrical Shells

Example. Compute the volume of the solid obtained by rotating the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$ about the y-axis.

Using cross-sections perpendicular to axis of rotation y, we run into a problem:
it is hard to solve the equation $y=2 x^{2}-x^{3}$ for x, which is needed to get the radii $r_{1}(y)$ and $r_{2}(y)$.

To get around this, use the "shell method," which subdivides the solid into "cylindrical shells." Let $S(x)$ denote the surface area of the shell.

Then $V \approx \sum_{i=1}^{n} S\left(x_{i}^{*}\right) \Delta x$. Making the subdivisions of $[a, b]$ smaller causes the sum to get closer to the actual volume. However, $\sum_{i=1}^{n} S\left(x_{i}^{*}\right) \Delta x$ is also a Riemann sum for the function $S(x)$ over the interval $[a, b]$, so the Riemann sums approach the integral $\int_{a}^{b} S(x) d x$. Therefore,

$$
V=\int_{a}^{b} S(x) d x, \quad \text { volume }=\begin{aligned}
& \text { integral of } \\
& \text { cylindrical shell } \\
& \text { surface area }
\end{aligned}
$$

Note. In a typical problem, where rotation is done around the y-axis, $S(x)=2 \pi x h(x)$.

Earlier Example. Compute the volume of the solid obtained by rotating the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$ about the y-axis.

Remember: always draw the @!@\# $\diamond \$$ picture!
Example. Find the volume of the solid obtained by rotating the region between $y=2$, $y=9-x$ and $y=2 x$ about the x-axis.

Calculus 2 - Lecture notes MAT 308, Fall 2021 - D. Ivanšić

7.4 Arc Length

Problem: Find the length L of the graph of the function $f(x)$ from $x=a$ to $x=b$.
We first approximate the length using line segments:

Then $L \approx \sum_{i=1}^{n} \sqrt{1+f^{\prime}\left(x_{i}^{*}\right)^{2}} \Delta x$. Making the subdivisions of $[a, b]$ smaller causes the sum to get closer to the actual length. However, $\sum_{i=1}^{n} \sqrt{1+f^{\prime}\left(x_{i}^{*}\right)^{2}} \Delta x$ is also a Riemann sum for the function $\sqrt{1+f^{\prime}(x)^{2}}$ over the interval $[a, b]$, so the Riemann sums approach the integral $\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x$. Therefore,

$$
L=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

Note: The integral has a square root of something possibly complicated. Prepare to die.

Example. Find the length of the curve $y=\frac{x^{2}}{2}-\frac{\ln x}{4}$, where $2 \leq x \leq 4$.

Example. Find the circumference of a circle of radius r.

Calculus 2 - Lecture notes MAT 308, Fall 2021 - D. Ivanšić

7.5 Area of a Surface of Revolution

To approximate the area of a surface of revolution, subdivide the surface into bands.

For every band, Area $\approx l_{i} \cdot 2 \pi r_{i}=\sqrt{1+f^{\prime}\left(x_{i}^{*}\right)^{2}} \Delta x \cdot 2 \pi f\left(x_{i}^{*}\right)$, giving us the approximation and Riemann sum $S \approx \sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+f^{\prime}\left(x_{i}^{*}\right)^{2}} \Delta x$. By usual considerations, surface area is then an integral:

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
$$

Example. Find the surface area of a sphere of radius r.

In general, since the rotated curve can usually be thought of as a function of x or y, one integrates $\int_{a}^{b} 2 \pi r l d z$, where z is x or y. Now, $l d z$ stands for $\sqrt{1+f^{\prime}(z)^{2}} d z$, which is abbreviated as $d s$ (length element). Thus, the general formula is

$$
S=\int_{a}^{b} 2 \pi r d s
$$

Example. Find the surface area of the surface obtained by rotating the curve $y=\sqrt{x}$, $1 \leq x \leq 4$ about the x-axis, treating it
a) as a function of x
b) as a function of y

Calculus 2 - Lecture notes MAT 308, Fall 2021 - D. Ivanšić

7.6 Work

Definition. When a constant force F acts on an object that moves a distance d along the line in the same direction as the force, we say that the force has done work W computed by

$$
W=F \cdot d
$$

Note that no work is done if the object does not move.

Units for work:

1) SI system: F is in Newtons, d is in meters, so W is in Newton-meters (Nm), or Joules (J)
2) US customary system: F is pounds, d is in feet, so W is in foot-pounds, $\mathrm{ft}-\mathrm{lb}$

Example. Find the work done by
a) lifting a book of 3 kg to a desk 70 cm high.
b) lifting a 30lb bucket 6 feet off the ground.

What if force is not constant?
Example. A spring is stretched by length x from its unextended position. The force needed to keep the string extended by x from its unextended position is:

$$
\text { Hooke's law for spring: } F(x)=k x
$$

In general, suppose force varies with position x as object is moved from $x=a$ to $x=b$. We approximate the work done: $W \approx \sum_{i=1}^{n} F\left(x_{i}^{*}\right) \Delta x$, which is also a Riemann sum for F over the interval $[a, b]$. Increasing the number of subdivisions improves the approximation of work, but it also tends towards the integral, so

$$
W=\int_{a}^{b} F(x) d x
$$

Example. Suppose the constant k for a spring is $k=200 \mathrm{~N} / \mathrm{m}$. What work is done by extending the spring 30 cm from its unextended length?

Example. How much work is done by pumping water from a $1 \mathrm{~m} \times 1 \mathrm{~m} \times 3 \mathrm{~m}$ rectangular box tank to a height 4 meters above the tank, where the $1 \mathrm{~m} \times 3 \mathrm{~m}$ side is parallel to the ground?

