
Calculus 2 — Lecture notes
MAT 308, Fall 2021 — D. Ivanšić 6.0 The Substitution Rule

The substitution rule is a sort of reverse to the chain rule:

(f(g(x)))′ = f ′(g(x)) · g′(x)

Suppose we need to integrate something that has form∫
f(g(x))g′(x) dx

This is almost like the above, except it has f(g(x)) rather than f ′(g(x)). If we had a function
F so that F ′ = f , we could write:∫

f(g(x))g′(x) dx =

∫
F ′(g(x))g′(x) dx = [recognize chain rule] = F (g(x))

Therefore, in order to integrate something of form

∫
f(g(x))g′(x) dx, all we need to know is

the antiderivative of f . This is captured as the substitution rule∫
f(g(x))g′(x) dx =

∫
f(u) du once done substitute back g(x) for u

Example.

∫
2x− sin x

x2 + cos x
dx =

Example.

∫
e
√
x

√
x
dx =
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The substitution rule works in definite integrals as well:∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u) du (always change the bounds)

Example.

∫ 1

0

2x− 5

(x2 − 5x+ 5)3
dx =

Example.

∫ π
3

−π
3

sin5 θ ln(5 + cos θ) dθ =

Example.

∫ 400
π2

25
π2

cos
5√
x

x
3
2

dx =
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MAT 308, Fall 2021 — D. Ivanšić 6.1 Integration by Parts

Integration by parts is a rule that is a sort of reverse to the product rule.

It is written usually as ∫
u dv = uv −

∫
v du

Formula offers a way to deal with the integral of a product:

Example.

∫
xex dx =

Example.

∫
ln x dx =
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Example.

∫
x2 sin(2x) dx =

Example.

∫
e3x cos x dx =
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Example. (A reduction formula)

∫
x7ex dx = x7ex − 7

∫
x6ex dx

Integration by parts also works with a definite integral:∫ b

a

u dv = uv
∣∣∣b
a
−
∫ b

a

v du

Example.

∫ 1

0

arctan x dx =
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MAT 308, Fall 2021 — D. Ivanšić 6.2 Trigonometric Integrals

Example.

∫
sin2 x cos3 x dx =

Same trick works for
∫
sinm x cosn x dx as long as at least one of m, n is odd.

What if both are even? Use a half-angle formula (x is half of 2x):

sin2 x =
1− cos(2x)

2
cos2 x =

1 + cos(2x)

2

Example.

∫ π
2

0

cos2 x dx =

Example.

∫
sin2 x cos2 x dx =
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Example.

∫
tan4 x sec4 x dx =

Example.

∫
tan5 x sec3 x dx =

Given
∫
tanm x secn x dx we can perform the above tricks as long as

1. n is even, or

2. m is odd and n > 0

When n is odd and m is even, we deal with
∫
tanm x secn x dx on a case-by-case basis.

Example.

∫
tan2 x sec x dx =
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Trigonometric Substitution.

Example. Find the area of a disk of radius 3. It has equation x2 + y2 = 9, first find area of
a quarter of the disk using an integral.

Note: θ should be chosen in
[
−π

2
, π
2

]
because that makes cos θ > 0, so cos θ =

√
1− sin2 θ.

Trigonometric substitution exploits trigonometric identities to eliminate the root.

Use to eliminate root in via substitution

cos2 θ + sin2 θ = 1
√
a2 − x2 x = a sin θ, θ ∈

[
−π

2
, π
2

]
1 + tan2 θ = sec2 θ

√
a2 + x2 x = a tan θ, θ ∈

(
−π

2
, π
2

)
tan2 θ = sec2 θ − 1

√
x2 − a2 x = a sec θ, θ ∈

(
0, π

2

)
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Example.

∫
dx

x2
√
4 + x2

=

Example. Any quadratic expression can be brought into form a2 − x2, a2 + x2 or x2 − a2

by completing the square.∫
dx√

x2 + 6x+ 8
=
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6.3 Integration of

Rational Functions

We wish to integrate

∫
P (x)

Q(x)
dx, where P (x), Q(x) are polynomials and deg P < deg Q.

(If not, do long division first.)

The method is:

1) Factor Q(x) into irreducible factors of form (ax+ b)k or (ax2 + bx+ c)l.
(“Irreducible” = cannnot be factored further)

2) Fact.
P (x)

Q(x)
can be written as a sum of terms of form

A

(ax+ b)i
or

Bx+ C

(ax2 + bx+ c)j
, called partial fractions

where ax+ b and ax2 + bx+ c are irreducible factors of Q(x).

Example.
5x7 + 3x6 − 4x3 + x2 + 1

(x− 1)(x+ 4)3(x2 + 2x+ 6)(x2 + 5)2
=

Notice that in the partial fraction decomposition the exponents on denominators ax+ b and
ax2 + bx+ c go from 1 to the exponent with which they appear in the factorization of Q(x).

The next step is to find the unknown coefficients in the numerators. Afterwards, each partial
fraction can be integrated.

Example.

∫
x+ 2

x2(x+ 3)
dx =
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Example.

∫
3x2 − 4x+ 5

(x− 1)(x2 + 1)
dx =
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Example.

∫
dx

x2 + a2
=

Example.

∫
3x− 2

x2 − 4x+ 8
dx =

Example.

∫
dx

(x2 + 9)2
=
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MAT 308, Fall 2021 — D. Ivanšić 6.5 Approximate Integration

There are plenty of situations when
∫ b

a
f(x) dx cannot be found using the Fundamental The-

orem of Calculus. For example, the function f(x) may not have an antiderivative among
elementary functions. The following antiderivatives, which exist by the Fundamental Theo-
rem of Calculus,∫

ex
2

dx,

∫
sin(x2) dx,

∫
ex

x
dx,

∫
sin x

x
dx,

∫ √
1 + x3 dx

are not elementary functions (an elementary function is any combinations of polynomials,
roots, trigonometric, expential functions and their inverses).

In such situations we resort to approximate integration. We have already seen in Calculus 1
how

∫ b

a
f(x) dx can be approximated by

Ln, Rn, Tn,Mn : left, right endpoint, trapezoid, midpoint estimates

Example. Estimate

∫ 2

1

1

x
dx using trapezoid and midpoint estimates, doubling the number

of subintervals every time. Check accuracy of estimate by comparing to exact value ln 2.

n Tn Mn ET = ln 2− Tn EM = ln 2−Mn

10

20

40

80
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Observations from the table:

1) The bigger the n, the smaller the error

2) Error of Mn is about two times smaller than for Tn

3) Errors decrease by about a factor of 4 when we double n

4) Errors of Mn, Tn are opposite in sign.

It is possible to give error estimates for Tn, Mn.

Theorem. Let K =maximum of |f ′′(x)| on the interval [a, b]. (Or, take any K ≥ |f ′′(x)|
for all x in [a, b].) Then the errors ET and EM for trapezoid and midpoint rules satisfy:

|ET | ≤
K(b− a)3

12n2
, |EM | ≤ K(b− a)3

24n2

Example. For the integral

∫ 2

1

1

x
dx, what are the greatest possible errors for Tn and Mn

when n = 40, 80?

Example. For the integral

∫ 2

1

1

x
dx, how big must n be so that Mn has an error smaller

than 10−6?
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To get even better accuracy from approximate integration, we should approximate curves
with something curvy, for example, parabolas, i.e. quadratic functions. A parabola is
determined by three points, so we replace the function with a parabola through three adjacent
points in the equal-length subdivision of the interval.

In general, the area under one parabola depends on the values at the three points it passes
through: ∫ x2

x0

Ax2 +Bx+ C dx =
∆x

3
(y0 + 4y1 + y2)

Combined areas under all the parabolas (n even) is

giving us the Simpson rule:

Sn =
∆x

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−2 + 4yn−1 + yn)

It turns out that

S2n =
1

3
Tn +

2

3
Mn
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Example. Compute the Simpson rule and its error for

∫ 2

1

1

x
dx and n = 10, 20, 40, 80.

n Sn ES = ln 2− Sn

10

20

40

80

Theorem. Let K =maximum of |f (4)(x)| on the interval [a, b]. (Or, take any K ≥ |f (4)(x)|
for all x in [a, b].) Then the error ES for Simpson’s rule satisfies:

|ES| ≤
K(b− a)5

180n4

Example. For the integral

∫ 2

1

1

x
dx, what are the greatest possible errors for Sn when

n = 40, 80?

Example. For the integral

∫ 2

1

1

x
dx, how big must n be so that Sn has an error smaller

than 10−6?
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Example. Consider the following functions on the indicated intervals.

f(x) =
1

x
on [1,∞) f(x) =

1

x2
on [1,∞) f(x) = ex on [−∞, 0)

Are the areas under the curves over those intervals finite? How to compute them?

Let A(t) be the area under
1

x2
on the interval [1, t]. It is reasonable to say that area under

1

x2
on the interval [1,∞] is finite if lim

t→∞
A(t) is a finite number.

lim
t→∞

A(t) =

Similarly, check areas under
1

x
and ex:
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Previous examples motivate this

Definition. (Improper integral over an infinite interval, Type 1.) Suppose

∫ t

a

f(x) dx exists

for every t ≥ a. Then we define∫ ∞

a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx

If the limit exists (is a real number), we say the improper integral is convergent (verb:
converges). If the limit does not exist, we say the improper integral is divergent (verb:
diverges).∫ b

−∞
f(x) dx is defined in the same way:

∫ b

−∞
f(x) dx = lim

t→−∞

∫ b

t

f(x) dx

∫ ∞

−∞
f(x) dx is said to be convergent if both

∫ a

−∞
f(x) dx and

∫ ∞

a

f(x) dx are convergent for

some a (may use any a). In this case,∫ ∞

−∞
f(x) dx =

∫ a

−∞
f(x) dx+

∫ ∞

a

f(x) dx

Example. Is the area under
1

x
over the interval [0, 1] finite?

Example.

∫ 9

1

1
3
√
x− 9

dx =
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Example. For which p > 0 does

∫ ∞

1

1

xp
dx converge?

Conclusion:

∫ ∞

1

1

xp
dx

converges, if p > 1
diverges, if p ≤ 1

Note.

∫ ∞

a

f(x) dx converges if and only if

∫ ∞

b

f(x) dx converges

Example. Does

∫ ∞

0

cos2 x

1 + x2
dx converge?

This is a difficult integral, but we may use:
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Comparison Theorem. Suppose f , g are continuous functions and that f(x) ≥ g(x) ≥ 0
for x ≥ a.

a) If

∫ ∞

a

f(x) dx is convergent, then

∫ ∞

a

g(x) dx is convergent.

b) If

∫ ∞

a

g(x) dx is divergent, then

∫ ∞

a

f(x) dx is divergent

Example. Use comparison to determine if

∫ ∞

0

cos2 x

1 + x2
dx converges.

Example. Use comparison to determine if

∫ ∞

1

ln x

x
dx converges.
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