College Algebra - Handout
 MAT 140 - D. Ivanšić

All our formulas

No, you may not bring these to an exam

Rules for exponents: Algebraic expressions:
$a^{-n}=\frac{1}{a^{n}}$
$a^{m} \cdot a^{n}=a^{m+n}$
$\frac{a^{m}}{a^{n}}=a^{m-n}$
$\left(a^{m}\right)^{n}=a^{m n}$
$(a b)^{m}=a^{m} b^{m}$
$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
Rules for roots:
$\sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b}$
$\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
$\sqrt[n]{a^{n}}=|a|$, for even n
$\sqrt[n]{a^{n}}=a$, for odd n
$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& a^{2}-b^{2}=(a-b)(a+b) \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

Circles and lines:

square of a sum square of a difference difference of squares cube of a sum cube of a difference difference of cubes sum of cubes
$(x-h)^{2}+(y-k)^{2}=r^{2} \quad$ circle with center (h, k) and radius r $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ slope of line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ $y=m x+b \quad$ line with slope m and y-intercept b $y-y_{1}=m\left(x-x_{1}\right) \quad$ line with slope m through $\left(x_{1}, y_{1}\right)$

Distance and midpoint

$$
\begin{aligned}
& d=|a-b| \\
& m=\frac{a+b}{2} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
\end{aligned}
$$

Rules for logarithms:

$\log _{a} a^{x}=x \quad a^{\log _{a} x}=x$
$\log _{b} M=\frac{\log _{a} M}{\log _{a} b}$
$\log _{a}(M N)=\log _{a} M+\log _{a} N$
$\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N$
$\log _{a} M^{p}=p \cdot \log _{a} M$
distance between real numbers a and b midpoint of real numbers a and b
distance between points in the plane $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ midpoint of points in the plane $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

Quadratic formula:

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Even, odd functions:

If $f(-x)=f(x), f$ is even
If $f(-x)=-f(x), f$ is odd
Compound interest:
$A=P\left(1+\frac{r}{n}\right)^{n t}$

