College Algebra - Lecture notes MAT 140, Fall 2021 - D. Ivanšić

4.1, 4.2 Polynomial Functions and Their Graphs

Example. Draw graphs of power functions x^{n} for the exponents given.
x^{2}, x^{4}, x^{6}

$$
x^{3}, x^{5}, x^{7}
$$

Graphs of $x^{\text {even }}$ have the same shape as x^{2}, graphs of $x^{\text {odd }}$ have the same shape as x^{3}.

Definition. A general polynomial is a function of form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{2} x^{2}+a_{1} x+a_{0}
$$

Some terminology: $a_{n} x^{n}$ is called the leading term, a_{n} the leading coefficient; if $a_{n} \neq 0, n$ is the degree of the polynomial.

Example. Compare the graphs of $f(x)=2 x^{3}-3 x^{2}-5 x-4$ and $g(x)=2 x^{3}$.

Fact. For large x or large negative x, every polynomial behaves like its leading term $a_{n} x^{n}$. This is referred to as the end behavior of the polynomial. Thus, graphs of polynomials look like one of the four pictures below.

Example. Draw the graph of the polynomial $f(x)=(x-2)^{2}(x+1)(x-4)$.
x-intercepts (also called zeroes) are 2, $-1,4$
their corresponding multiplicities are 2, 1, 1 (exponents on factors related to the zeroes)

Fact. If c is a zero of a polynomial $P(x)$, then $x-c$ is a factor of $P(x)$, so $P(x)=(x-c)^{k} g(x)$.
Definition. If $(x-c)^{k+1}$ is not a factor of the polynomial $P(x)$, but $(x-c)^{k}$ is, we say the zero c has multiplicity k. Behavior of the graph at a zero depends on its multiplicity in this way:

Multiplicity of c	Graph of $P(x)$ at c
even	touches x-axis
odd	crosses x-axis

Example. Let $f(x)=(x+3)^{2}\left(x^{2}+7\right)(1-x)$. For the polynomial, find the zeroes and their multiplicities, determine end behavior and use this information to help you sketch the graph of the polynomial.

Guidelines for graphing a polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{2} x^{2}+a_{1} x+a_{0}$

1) Determine end behavior - for large $|x|$, it looks like $a_{n} x^{n}$.
2) Find the y-intercept, the zeroes (x-intercepts, there can be at most n zeroes) and their multiplicities.
3) Find the turning points (local minima and maxima, there can be at most $n-1$ of them).

Example. Use the guidelines to graph the polynomial $f(x)=x^{4}-4 x^{3}+3 x^{2}$.

