Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C (one if you are an undergraduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when a function $f : A \to \mathbf{R}$ is continuous at a point $c \in A$.

Theory 2. (3pts) State the Maximum-Minimum Theorem.

Theory 3. (3pts) State the theorem that says what is the image of [a, b] under a continuous function.

Type A problems (5pts each)

A1. Prove by definition that the function f(x) = 7x + 2 is continuous at every $c \in \mathbf{R}$.

A2. Let $f : \mathbf{R} \to \mathbf{R}$ be continuous and $A = \{x \in \mathbf{R} \mid f(x)^2 - f^2(x) = 3\}$ (the first one is $f \cdot f$, the second one is $f \circ f$). If (x_n) is a sequence such that $x_n \in A$ and (x_n) converges to c, show that $c \in A$.

A3. Let $f, g : \mathbf{R} \to \mathbf{R}$ be functions so that f is continuous at a point $c \in \mathbf{R}$ and g is not continuous at c. Show that f + g is not continuous at c.

A4. Prove that the equation $2^x = \sin x$ has infinitely many solutions. (Draw a picture for inspiration.)

A5. Use the sequential criterion to show that $f(x) = x^2$ is not uniformly continuous on its domain **R**.

TYPE B PROBLEMS (8PTS EACH)

B1. Prove by definition that the function $f(x) = x^2 - 5x + 3$ is continuous at every $c \in \mathbf{R}$.

B2. Let $f: (0, \infty) \to \mathbf{R}$ be defined by $f(x) = x^2$ for a rational x, and f(x) = 3 for an irrational x. Determine the numbers where the function is continuous and where it is not. Justify in detail. You may use the fact that x^2 is a continuous function on all reals.

B3. Let $f : [0,1] \to [0,1]$ be a continuous function. Show that there exists a $c \in [0,1]$ such that f(c) = c. (To get started, draw a picture.)

B4. Let $f, g: [a, b] \to \mathbf{R}$ be Lipschitz functions. Show that the function $f \cdot g$ is Lipschitz.

B5. Let $f : [a, b] \to \mathbf{R}$ be continuous and nonconstant, and suppose f(a) = f(b). Show that there is a function value $V \neq f(a), f(b)$ that is taken on at least twice.

B6. For x > 0, recall that $x^{\frac{m}{n}} = (x^{\frac{1}{n}})^m = (x^m)^{\frac{1}{n}}$, $m \in \mathbb{Z}$, $n \in \mathbb{N}$, where the first equation is the definition and the second was proven (so you may use it). Show that rational exponents are well-defined, that is, if mq = np, show that $(x^{\frac{1}{n}})^m = (x^{\frac{1}{q}})^p$. Start with $x^{mq} = x^{np}$, raise both sides to $\frac{1}{q}$, and take it from there. This is not hard, but be careful that you not use what you are trying to prove.

TYPE C PROBLEMS (12PTS EACH)

C1. Let $f : \mathbf{Q} \to \mathbf{R}$ be a function that, for every $c \in \mathbf{R}$, is uniformly continuous on an interval around $c \in \mathbf{R}$. That is, for every $c \in \mathbf{R}$, there is an interval $(c - \delta_c, c + \delta_c)$ such that the restriction of f to $(c - \delta_c, c + \delta_c) \cap \mathbf{Q}$ is uniformly continuous.

a) Let $c \in \mathbf{R}$ and let $x_n \to c$, where $x_n \in \mathbf{Q}$ for every $n \in \mathbf{N}$. Show that $f(x_n)$ is a Cauchy sequence, hence converges.

b) For $c \in \mathbf{R} - \mathbf{Q}$, define $f(c) = \lim f(x_n)$, where $x_n \in \mathbf{Q}$ is any sequence that converges to c. Show that this definition does not depend on the sequence x_n , that is, if $x_n, y_n \in \mathbf{Q}$, $x_n \to c, y_n \to c$, then $\lim f(x_n) = \lim f(y_n)$.

This allows us to extend the function $f : \mathbf{Q} \to \mathbf{R}$ to all real numbers.

C2. Show that the extension of the function $f : \mathbf{Q} \to \mathbf{R}$, as defined above, is uniformly continuous on an interval around every $c \in \mathbf{R}$, and is thus continuous.

Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C (one if you are an undergraduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when a function $f: I \to \mathbf{R}$ has a relative maximum at a number c.

Theory 2. (3pts) Define the *n*-th Taylor polynomial at x_0 for a function f.

Theory 3. (3pts) State the Cauchy Mean Value Theorem.

Type A problems (5pts each)

A1. Show this function is differentiable at 0 and find f'(0): $f(x) = \begin{cases} \sin x, \text{ if } x > 0 \\ e^x - 1, \text{ if } x < 0 \\ 0, \text{ if } x = 0 \end{cases}$

A2. Find the limit: $\lim_{x\to 0+} \ln(x+1) \ln x$.

A3. Derive the quotient rule from the product rule as follows: let $h(x) = \frac{f(x)}{g(x)}$, then h(x)g(x) = f(x). Assume h is differentiable and get h' from the second equation after applying the product rule.

A4. Use the Mean Value Theorem to show $|\tan x - \tan y| \ge |x - y|$ for all $x, y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

A5. Let $f(x) = \sqrt[3]{1+x}$. a) Write the Taylor polynomials P_1 and P_2 for f at $x_0 = 0$. b) Show that for x > 0, $P_2(x) \le \sqrt[3]{1+x} \le P_1(x)$.

A6. Let *I* be an open interval, $a \in I$, and let $f : I \to \mathbf{R}$ be differentiable. Show: if $\lim_{x\to a} f'(x)$ exists, it is equal to f'(a).

TYPE B PROBLEMS (8PTS EACH)

B1. Let $f: [-1,1] \to \mathbf{R}$ be the piecewise-linear function, where, for $n = 2, 3, \ldots$

$$f(x) = \begin{cases} \text{line between points } \left(\frac{1}{n}, \frac{1}{n^2}\right) \text{ and } \left(\frac{1}{n-1}, \frac{1}{(n-1)^2}\right) \text{ if } x \in \left(\frac{1}{n}, \frac{1}{n-1}\right] \\ \text{line between points } \left(-\frac{1}{n-1}, \frac{1}{(n-1)^2}\right) \text{ and } \left(-\frac{1}{n}, \frac{1}{n^2}\right) \text{ if } x \in \left[-\frac{1}{n-1}, -\frac{1}{n}\right) \\ 0, \text{ if } x = 0. \end{cases}$$

Show that f is differentiable at 0. (Best to use an ϵ - δ argument and inequality involving the function.)

B2. Let $f: [-1,4] \to \mathbf{R}$ be continuous on [-1,4] and differentiable on (-1,4), and suppose that $-2 \leq f'(x) \leq 7$ for all $x \in (-1,4)$. If f(-1) = 21, use the Mean Value Theorem to establish the range of values that f(4) can take. Give examples to show that the upper and lower bound for f(4) can be achieved.

B3. Let $f(x) = x^2 \sin \frac{1}{x}$ and g(x) = x. Show that $\lim_{x \to 0} \frac{f(x)}{g(x)}$ exists, but $\lim_{x \to 0} \frac{f'(x)}{g'(x)}$ does not. Does this contradict L'Hospital's rule?

B4. Let $f : \mathbf{R} \to \mathbf{R}$ be a function such that f''' is continuous and for some $c \in \mathbf{R}$, f'(c) = f''(c) = 0 and f'''(c) > 0. Use Taylor's theorem to show that f does not have a local extreme at c.

B5. Use a Taylor polynomial to get a rational number (you do not have to simplify it) that approximates $\cos \frac{2}{3}$ with accuracy 10^{-3} .

B6. Show that the equation $x^3 + 3x^2 + 7x + 2 = 0$ has a solution and find an interval in which Newton's method converges regardless of the starting point.

Type C problems (12pts each)

C1. Let *I* be an open interval and let $f: I \to \mathbf{R}$ be differentiable and convex. Note we are not assuming that f'' exists. Show that f' is an increasing function as follows: let $a, b \in I$, a < b and let $x_t = (1 - t)a + tb$. Then $f'(a) = \lim_{x_t \to a_+} \frac{f(x_t) - f(a)}{x_t - a}$. Turn the limit into a limit by *t* and apply convexity to get an inequality that will help you show f'(a) < f'(b).

Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C (one if you are an undergraduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define the indefinite integral based at point a.

Theory 2. (3pts) State the squeeze theorem (criterion of integrability).

Theory 3. (3pts) State the first form of the Fundamental Theorem of Calculus (the one dealing with how to compute the integral of a function using an antiderivative).

Type A problems (5pts each)

A1. Give an example of a function that is not Riemann-integrable. Show, using the definition, that it is not Riemann-integrable.

A2. Prove the Mean Value Theorem for Integrals: if f(x) is continuous on [a, b], there exists a $c \in [a, b]$ such that $\int_a^b f = f(c)(b - a)$.

A3. If
$$F(x) = \int_{\sqrt{x}}^{e^x} \sin \frac{1}{t^2} dt$$
, find the expression for $F'(x)$.

A4. For a function $f : [a, b] \to \mathbf{R}$, suppose there exist sequences of tagged partitions $\dot{\mathcal{P}}_n$, $\dot{\mathcal{Q}}_n$ such that $||\dot{\mathcal{P}}_n|| \to 0$ and $||\dot{\mathcal{Q}}_n|| \to 0$, and $|S(f, \dot{\mathcal{P}}_n) - S(f, \dot{\mathcal{Q}}_n)| \ge \frac{1}{10}$ for all $n \in \mathbf{N}$. Show that f is not Riemann-integrable on [a, b].

A5. If $f:[0,1] \to \mathbf{R}$ is continuous and has the property $\int_0^x f = \int_x^1 f$ for all $x \in [0,1]$, show that f(x) = 0 for all $x \in [0,1]$.

Type B problems (8pts each)

B1. Let $f : [-2, \infty] \to \mathbf{R}$ be the function at right and let $F : [-2, \infty) \to \mathbf{R}$, $F(x) = \int_{-2}^{x} f$. a) Calculate F(x). b) Draw the graphs of f and F. c) Where is F continuous? Differentiable? **B2.** Let $f : [2, 6] \to \mathbf{R}$ be the function at right. a) Guess the value of $\int_{2}^{6} f$. b) Prove by definition of the Riemann integral $f(x) = \begin{cases} 3, & \text{if } x \in [-2, 1] \\ 2 + x^{2}, & \text{if } x \in (1, 2) \\ x, & \text{if } x \in [2, \infty) \end{cases}$ $f(x) = \begin{cases} -1, & \text{if } x \in [2, 3) \\ 2, & \text{if } x \in [3, 6] \end{cases}$

b) Prove by definition of the Riemann integral $f(x) = \begin{cases} 2, & \text{if } x \in [3, 6] \\ 1, & \text{if } x \in [3, 6] \end{cases}$ that $\int_2^6 f$ is the number you guessed.

B3. Let $f : [0, 1] \to \mathbf{R}$ be the function at right. Use the squeeze theorem to show f is Riemann-integrable on [0, 1].

$$f(x) = \begin{cases} \sin \frac{1}{x}, & \text{if } x \in (0,1] \\ 0, & \text{if } x = 0 \end{cases}$$

B4. Let $f : [a, b] \to \mathbf{R}$ be an increasing function. Use the squeeze theorem to show f is Riemann integrable on [a, b]. (Hint: subdivide the interval [a, b] into n equal subintervals and define functions α and ω in an easy way on each subinterval to ensure $\alpha \leq f \leq \omega$.)

B5. Let $f \in \mathcal{R}[0, a]$ and let $g : [0, a] \to \mathbf{R}$, g(x) = f(a - x). Use Cauchy's criterion to show that $g \in \mathcal{R}[0, a]$. (Hint: relate tagged partitions and Riemann sums for g to those for f.)

Type C problems (12pts each)

C1. Thomae's function $f:[0,1] \to \mathbf{R}$ is given by

$$f(x) = \begin{cases} \frac{1}{n}, & \text{if } x = \frac{m}{n} \text{ (reduced) for some } m, n \in \mathbf{N} \\ 0, & \text{if } x \notin \mathbf{Q}. \end{cases}$$

Use the definition to show that f is Riemann-integrable on [0, 1], following these steps: a) For $i \ge 2$, show there are at most i - 1 reduced fractions in [0, 1] with denominator i. b) Given $n \in \mathbf{N}$, let D_n be the set of reduced fractions in [0, 1] with denominators $1, 2, \ldots, n$. Show D_n has at most $2 + 1 + 2 + 3 + \cdots + (n - 1) = 2 + \frac{n(n-1)}{2}$ elements. c) Observe that $2 + \frac{n(n-1)}{2} \le \frac{n^2}{2}$ for $n \ge 4$.

d) Let $\dot{\mathcal{P}}_n$ be a tagged partition with n^3 equal subintervals and any tags. Show at most n^2 of those subintervals contain an element of D_n — the remaining ones do not have any elements of D_n (note an element of D_n may be an endpoint of a subinterval, putting it in two subintervals).

e) Use d) to argue that $S(f, \dot{\mathcal{P}}_n) < \frac{2}{n}$. Conclude f is Riemann-integrable.