Do all the theory problems. Then do at least five problems, at least two of which are of type B or C. If you do more than five, best five will be counted.

Theory 1. (3pts) State the $\epsilon-\delta$ definition of continuity at a point c.
Theory 2. (3pts) State Taylor's theorem.
Theory 3. (3pts) State Cauchy's theorem for Riemann integrability of a function.

Type A problems (5pts Each)

A1. Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be continuous functions such that $f(a)>g(a)$ and $f(b)<g(b)$, $a<b$. Show that there exists a $c \in(a, b)$ such that $f(c)=g(c)$.

A2. Let $f:[a, b] \rightarrow \mathbf{R}$ be a continuous function such that $f(x)<0$, for all $x \in[a, b]$. Show there exists a number $d<0$ such that $f(x)<d$, for all $x \in[a, b]$.

A3. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be such that $f^{\prime \prime \prime}$ exists and $f^{\prime \prime \prime}(x)<0$, and consider the Taylor polynomial P_{2} for f at x_{0}, whose graph is a parabola. Use Taylor's theorem to show that the graph of f is above this parabola for $x<x_{0}$, and below it for $x>x_{0}$.

A4. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is such that $f^{\prime \prime}$ exists and for some $a<c<b$ we have $f(a)=f(b)=0$ and $f(c)>0$. Show that there exists a point $d \in(a, b)$ such that $f^{\prime \prime}(d)<0$ (use convexity).
A5. If $F(x)=\int_{\cos x}^{\sqrt[3]{x}} \sqrt[4]{4 x^{3}+1} d t$, find the expression for $F^{\prime}(x)$.
A6. If $f:[0,1] \rightarrow \mathbf{R}$ is continuous and has the property $\int_{0}^{x} f=\int_{x}^{1} f$ for all $x \in[0,1]$, show that $f(x)=0$ for all $x \in[0,1]$.

Type B problems (8pts Each)

B1. Let $f:[a, b] \rightarrow \mathbf{R}$ be a Lipschitz function such that $f(x) \neq 0$ for all $x \in[a, b]$. Show that the function $\frac{1}{f(x)}$ is Lipschitz, too.

B2. Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous, and suppose f takes on some value V_{1} at least twice. Show that there is another function value $V_{2} \neq V_{1}$ that is taken on at least twice.

B3. Let $f:[a, \infty) \rightarrow \mathbf{R}$ be differentiable, $f(a)=b$ and suppose $m_{1} \leq f^{\prime}(x) \leq m_{2}$, for all $x \in(a, \infty)$. Use the Mean Value Theorem to show that the graph of f must lie between the lines with slopes m_{1} and m_{2}, passing through (a, b). Conversely, does every smooth graph passing through (a, b) between the two lines satisfy $m_{1} \leq f^{\prime}(x) \leq m_{2}$?

B4. Use a Taylor polynomial for $\ln x$ at $x_{0}=1$ to get a rational number that approximates $\ln \frac{1}{2}$ with accuracy 10^{-4}.

B5. Find the limit: $\lim _{x \rightarrow 0+}(-\ln x)^{\ln (x+1)}$. (Note: for small $x>0, \ln x<0$, so we need a minus to ensure that the base is a positive number).

B6. Let $f:[-1, \infty] \rightarrow \mathbf{R}$ be the function at right and let $F:[-1, \infty) \rightarrow \mathbf{R}, F(x)=\int_{-1}^{x} f$.
a) Calculate $F(x)$.
b) Draw the graphs of f and F.

$$
f(x)=\left\{\begin{array}{cl}
-x, & \text { if } x \in[-1,1] \\
-1, & \text { if } x \in(1,4] \\
x-6, & \text { if }(4, \infty)
\end{array}\right.
$$

c) Where is F continuous? Differentiable?

B7. Let $f:[0,1] \rightarrow \mathbf{R}$ be the function at right. Use the squeeze theorem to show f is Riemann integrable on $[0,1]$.

$$
f(x)= \begin{cases}\frac{n-1}{n}, & \text { if } x \in\left[\frac{1}{n}, \frac{1}{n-1}\right), n \geq 2 \\ 1, & \text { if } x=0 \\ \frac{1}{2}, & \text { if } x=1\end{cases}
$$

B8. For the integral $\int_{0}^{4} e^{x^{2}} d x$, how many subintervals are needed so that the Simpson estimate S_{n} has accuracy 10^{-3} ?

Type C problems (12pts Each)

C1. Show that the function $f(x)=\ln x$ is uniformly continuous on the interval $[1, \infty)$.
$\mathbf{C} 2$. Let $f:(0, \infty) \rightarrow \mathbf{R}$ be differentiable on $(0, \infty)$. If the following statements are true, prove them, otherwise, find a counterexample.
a) If $\lim _{x \rightarrow \infty} f(x)=b$, then $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$.
b) If $\lim _{x \rightarrow \infty} f^{\prime}(x)=b$, where $b>0$, then $\lim _{x \rightarrow \infty} f(x)=\infty$.
c) If $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$, then $\lim _{x \rightarrow \infty} f(x)$ exists, and is a real number.

C3. If p is a polynomial of degree at most 3 , show the Simpson approximation S_{n} is exact as follows, without using the error estimate. First note that it is enough to show this for the case of two subintervals (i.e., for S_{2}).
a) For each of the functions $f(x)=1, x, x^{2}, x^{3}$ show that

$$
\int_{a-h}^{a+h} f(x) d x=\frac{1}{3} h(f(a-h)+4 f(a)+f(a+h))
$$

b) Conclude that if p is any polynomial of degree at most $3, x_{0}<x_{1}<x_{2}, x_{1}=\frac{x_{0}+x_{2}}{2}$, and $h=x_{1}-x_{0}$, then

$$
\int_{x_{0}}^{x_{2}} p(x) d x=\frac{1}{3} h\left(p\left(x_{0}\right)+4 p\left(x_{1}\right)+p\left(x_{2}\right)\right)
$$

which proves the Simpson approximation is exact for S_{2}.
c) Conclude the Simpson approximation S_{n} is exact for any polynomial p of degree at most 3 , and any even n.

