```
Advanced Calculus 2- Exam 2
MAT 526/626, Spring 2015 - D. Ivanšić
```

Do all the theory problems. Then do five problems, at least two of which are of type B or C (one if you are an undergraduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define the derivative of a function $f: I \rightarrow \mathbf{R}$, where I is an interval.
Theory 2. (3pts) Define a convex function.
Theory 3. (3pts) State the Mean Value Theorem.

Type A problems (5pts Each)

A1. Is this function differentiable at $0: f(x)=\left\{\begin{array}{l}x, \text { if } x \in \mathbf{Q} \\ 0, \text { if } x \notin \mathbf{Q} \text { ? }\end{array}\right.$
A2. Find the limits: a) $\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}} \quad$ b) $\lim _{x \rightarrow 0+} \sqrt[n]{x} \ln x$.
A3. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be such that $f^{\prime \prime \prime}$ exists and $f^{\prime \prime \prime}(x)<0$, and consider the Taylor polynomial P_{2} for f at x_{0}, whose graph is a parabola. Use Taylor's theorem to show that the graph of f is above this parabola for $x<x_{0}$, and below it for $x>x_{0}$.

A4. Let $L(x)$ be a function such that $L^{\prime}(x)=e^{x^{2}}$ (it exists, but cannot be written using elementary functions). Write expressions for the derivatives of the following functions:
a) $L(x)^{2}$
b) $L(L(x))$
c) $L(\sqrt{x})$

A5. Draw two pictures: the first illustrates how Newton's method works in a favorable setting, and the second shows how it can fail (that is, the next iteration is much farther from the solution than the current one).

A6. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is such that $f^{\prime \prime}$ exists and for some $a<c<b$ we have $f(a)=f(b)=0$ and $f(c)>0$. Show that there exists a point $d \in(a, b)$ such that $f^{\prime \prime}(d)<0$ (use convexity).

Type B problems (8pts Each)

B1. Let $f(x)=\left\{\begin{array}{l}x^{2} \sin \frac{1}{x}, \text { if } x \neq 0 \\ 0, \text { if } x=0 .\end{array}\right.$
Show that f is differentiable at every point, find $f^{\prime}(x)$, and show that $\lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist, hence $f^{\prime}(x)$ is not continuous.

B2. Let $f:[a, \infty) \rightarrow \mathbf{R}$ be differentiable, $f(a)=b$ and suppose $m_{1} \leq f^{\prime}(x) \leq m_{2}$, for all $x \in(a, \infty)$. Use the Mean Value Theorem to show that the graph of f must lie between the lines with slopes m_{1} and m_{2}, passing through (a, b). Conversely, does every smooth graph passing through (a, b) between the two lines satisfy $m_{1} \leq f^{\prime}(x) \leq m_{2}$?

B3. Let $f(x)=\sqrt[3]{x}$.
a) Write the Taylor polynomial P_{3} for f at $x_{0}=8$.
b) Find the interval around 8 for which you can guarantee that P_{3} approximates f with accuracy 10^{-2}.

B4. Use a Taylor polynomial to get a rational number that approximates \sqrt{e} with accuracy 10^{-4}.

B5. Show that the equation $x^{3}+2 x^{2}-5=0$ has a solution and find an interval in which Newton's method converges, regardless of the starting point. Also, find how many iterations Newton's method will require to achieve accuracy 10^{-3}.

B6. Find the limit: $\lim _{x \rightarrow 0+}(-\ln x)^{\ln (x+1)}$. (Note: for small $x>0, \ln x<0$, so we need a minus to ensure that the base is a positive number).

Type C problems (12pts Each)

C1. Let I be an open interval and $f: I \rightarrow \mathbf{R}$. Suppose there exists a continuous function $g: I \rightarrow \mathbf{R}$ such that for every $u, v \in I$, there exists a c between u and v such that

$$
\frac{f(v)-f(u)}{v-u}=g(c) .
$$

Show that f is differentiable on I and that $f^{\prime}(x)=g(x)$, which implies that f^{\prime} is continuous.
C2. Let $f:(0, \infty) \rightarrow \mathbf{R}$ be differentiable on $(0, \infty)$. If the following statements are true, prove them, otherwise, find a counterexample.
a) If $\lim _{x \rightarrow \infty} f(x)=b$, then $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$.
b) If $\lim _{x \rightarrow \infty} f^{\prime}(x)=b$, where $b>0$, then $\lim _{x \rightarrow \infty} f(x)=\infty$.
c) If $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$, then $\lim _{x \rightarrow \infty} f(x)$ exists, and is a real number.

