Calculus 2 - Final Exam MAT 308, Fall 2011 - D. Ivanšić

Show all your work!

1. (12pts) Consider the region enclosed by the curves $y=x^{2}-2 x-3$ and $y=x+7$.
a) Sketch the region.
b) Set up the integral that computes its area. Do not evaluate the integral.
2. (16pts) Consider the region bounded by the curves $y=\sin x$ and $y=x$ and $x=\frac{\pi}{2}$. Recall that $\sin x<x$ for $x>0$.
a) Find the volume of the solid obtained by rotating this region about the x-axis.
b) Sketch the solid and its typical cross-section.
3. (12pts) Integrate: $\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \sin ^{2} x \cos ^{3} x d x=$
4. (12pts) Use trigonometric substitution to evaluate: $\int \frac{x^{2}}{x^{2}+9} d x=$
5. (16pts) The integral $\int_{0}^{1} e^{x^{2}} d x$ is given. It cannot be found by antidifferentiation, since the antiderivative of $e^{x^{2}}$ is not expressible using elementary functions.
a) Write out the expression for M_{4} for this particular example, the midpoint rule with 4 subintervals.
b) Use the error estimate $\left|\operatorname{Error}\left(M_{n}\right)\right| \leq \frac{K_{2}(b-a)^{3}}{24 n^{2}}$ to determine how many subintervals are needed if we wish that M_{n} gives us an error less than 10^{-3} ?

Determine whether the following improper integrals converge, and, if so, evaluate them.
6. (6pts) $\int_{2}^{\infty} \frac{1}{\sqrt[5]{x}} d x=$
7. (10pts) $\int_{0}^{\infty} x e^{-x} d x=$
8. (8pts) Determine whether the series $\sum_{n=1}^{\infty} \frac{n^{2}+4 n}{n^{5}+2 n^{3}}$ converges.
9. (10pts) Justify why the series converges and find its sum.
$\sum_{n=1}^{\infty} \frac{7 \cdot 3^{n+1}}{2^{2 n-1}}=$
10. (14pts) Find the interval of convergence for the series $\sum_{n=1}^{\infty} n(x-2)^{n}$. Don't forget to check the endpoints of the interval for convergence.
11. (16pts) a) Write the series expansion for $\frac{1}{1+x}$ and state where it converges.
b) Integrate both sides of the equation in a) from $x=0$ to $x=\frac{1}{2}$.
c) How many terms of the series on the right side of b) would be needed to compute $\ln \frac{3}{2}$ with accuracy 10^{-2} ? Write the corresponding partial sum and simplify it to a fraction. (Recall the error estimate: $\left|s-s_{n}\right|<a_{n+1}$.)
12. (8pts) Convert (a picture may help):
a) $\left(2 \sqrt{2}, \frac{5 \pi}{4}\right)$ from polar to rectangular coordinates
b) $(-3, \sqrt{3})$ from rectangular to polar coordinates
13. (10pts) A particle moves along the path $c(t)=(3+2 \sin t,-2-2 \cos t)$, for $0 \leq t \leq \pi$. Eliminate the parameter in order to sketch the path of motion and then describe the motion of the particle.

Bonus. (8pts) Determine whether the series converges.
$\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$

Bonus. (7pts) A particle is traveling along the polar curve $r=f(\theta), \theta \geq 0$, where we also treat θ as time. Find the general expression for the speed of the particle at time θ. (Hint: you would know how to do this problem if you had parametric equations for x and y, wouldn't you?)

