Calculus 2 - Exam 5
 MAT 308, Fall 2011 - D. Ivanšić

Find the limits, if they exist.

1. (4pts) $\lim _{n \rightarrow \infty} \frac{100^{n}}{n!}=$
2. (8pts) $\lim _{n \rightarrow \infty} \sin \frac{(2 n-1) \pi}{4}=$
3. $(12 \mathrm{pts}) \lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=$
4. (10pts) Use the theorem that rhymes with the tool that unlocks doors to find:
$\lim _{n \rightarrow \infty} \frac{2+\sin n}{n^{2}+4}$
5. (6pts) Write the series using summation notation:
$\frac{4}{1}-\frac{8}{1 \cdot 2}+\frac{16}{1 \cdot 2 \cdot 3}-\frac{32}{1 \cdot 2 \cdot 3 \cdot 4}+\cdots=$
6. (12pts) Justify why the series converges and find its sum.
$\sum_{n=3}^{\infty} \frac{5 \cdot 2^{n-1}}{3^{n+1}}=$

Determine whether the following series converge and justify your answer.
7. $(6 \mathrm{pts}) \sum_{n=1}^{\infty} \frac{n^{2}+3}{n^{2}-1}$
8. $(12 \mathrm{pts}) \sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+3 n}}{n^{3}-4 n^{2}+1}$
9. (12pts) $\sum_{n=1}^{\infty} \frac{3^{n}-n^{3}}{n^{4}+4^{n}}$
10. (18pts) Consider the series $\sum_{n=1}^{\infty} n e^{-n}$.
a) Show that $f(x)=x e^{-x}$ is decreasing from some point on and positive for $x \geq 0$.
b) Justify why you may use the integral test on this series and apply it to determine whether the series converges. (Hint: use integration by parts.)

Bonus. (10pts) For which $p>0$ does $\sum_{n=2}^{\infty} \frac{1}{n^{p} \ln n}$ converge?

