Calculus 2 — Exam 4Name:MAT 308, Fall 2011 — D. IvanšićShow all your work!

Determine whether the following improper integrals converge, and, if so, evaluate them.

1. (8pts)
$$\int_{5}^{\infty} \frac{1}{x^{\frac{7}{9}}} dx =$$

2. (10pts)
$$\int_0^\infty e^{-3x} dx =$$

3. (14pts)
$$\int_{2}^{\infty} \frac{1}{x(\ln x)^2} dx =$$

4. (12pts) Use comparison to determine whether the improper integral $\int_0^1 \frac{e^x}{\sqrt{x}}$ converges.

5. (14pts) Find the length of the curve $y = \frac{x^5}{5} + \frac{1}{12x^3}$ from x = 1 to x = 3.

6. (20pts) The integral $\int_0^{1.2} \sin x^2 dx$ is given. It cannot be found by antidifferentiation, since the antiderivative of $\sin x^2$ is not expressible using elementary functions.

a) Use a program to find M_{25} , the midpoint rule with 25 subintervals. b) Use the error estimate $|\text{Error}(M_n)| \leq \frac{K_2(b-a)^3}{24n^2}$ to estimate the error that the midpoint rule makes for n = 25.

c) What should n be in order for M_n to give you an error less than 10^{-6} ?

- **7.** (22pts) Let $f(x) = \sqrt{x}$.
- a) Find the 3rd Taylor polynomial for f centered at a = 4.

b) Use your calculator to compute the error $|\sqrt{4.5} - T_3(4.5)|$. c) Use the error estimate $|f(x) - T_n(x)| \le K_{n+1} \frac{|x-a|^{n+1}}{(n+1)!}$ to estimate the error $|\sqrt{4.5} - T_3(4.5)|$. Does the actual error satisfy this error estimate?

d) How big should n be if we wish to estimate $\sqrt{4.5}$ using $T_n(4.5)$ with accuracy 10^{-7} ?

Bonus (10pts) Redoing problem 6, estimate $\int_0^{1.2} \sin x^2 dx$ using the Maclaurin polynomial $T_n(x)$ for $\sin x$ by following these steps.

a) Find an *n* such that $|\sin x - T_n(x)| \le \frac{5}{6} \times 10^{-6}$ on the entire interval [0, 1.44]. b) Write $T_n(x)$ for the *n* you found in a). c) Find the exact value of $\int_0^{1.2} T_n(x^2) dx$ and give its decimal value. (Note: you are integrating $T_n(x^2)$, not $T_n(x)$.)

d) Theory guarantees that your answer in c) approximates $\int_0^{1.2} \sin x^2 dx$ with accuracy 10^{-6} . From a machine's point of view, which of the two approaches required fewer calculations? (Note: $\frac{5}{6}$ and 1.44 appear in a) because $\frac{5}{6} = \frac{1}{1.2-0}$ and $1.44 = 1.2^2$.)