Calculus 2 - Exam 4 MAT 308, Fall 2011 - D. Ivanšić

Show all your work!

Determine whether the following improper integrals converge, and, if so, evaluate them.

1. $(8 \mathrm{pts}) \int_{5}^{\infty} \frac{1}{x^{\frac{7}{9}}} d x=$
2. (10pts) $\int_{0}^{\infty} e^{-3 x} d x=$
3. $(14 \mathrm{pts}) \int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} d x=$
4. (12pts) Use comparison to determine whether the improper integral $\int_{0}^{1} \frac{e^{x}}{\sqrt{x}}$ converges.
5. (14pts) Find the length of the curve $y=\frac{x^{5}}{5}+\frac{1}{12 x^{3}}$ from $x=1$ to $x=3$.
6. (20pts) The integral $\int_{0}^{1.2} \sin x^{2} d x$ is given. It cannot be found by antidifferentiation, since the antiderivative of $\sin x^{2}$ is not expressible using elementary functions.
a) Use a program to find M_{25}, the midpoint rule with 25 subintervals.
b) Use the error estimate $\left|\operatorname{Error}\left(M_{n}\right)\right| \leq \frac{K_{2}(b-a)^{3}}{24 n^{2}}$ to estimate the error that the midpoint rule makes for $n=25$.
c) What should n be in order for M_{n} to give you an error less than 10^{-6} ?
7. (22pts) Let $f(x)=\sqrt{x}$.
a) Find the 3rd Taylor polynomial for f centered at $a=4$.
b) Use your calculator to compute the error $\left|\sqrt{4.5}-T_{3}(4.5)\right|$.
c) Use the error estimate $\left|f(x)-T_{n}(x)\right| \leq K_{n+1} \frac{|x-a|^{n+1}}{(n+1)!}$ to estimate the error $\left|\sqrt{4.5}-T_{3}(4.5)\right|$. Does the actual error satisfy this error estimate?
d) How big should n be if we wish to estimate $\sqrt{4.5}$ using $T_{n}(4.5)$ with accuracy 10^{-7} ?

Bonus (10pts) Redoing problem 6, estimate $\int_{0}^{1.2} \sin x^{2} d x$ using the Maclaurin polynomial $T_{n}(x)$ for $\sin x$ by following these steps.
a) Find an n such that $\left|\sin x-T_{n}(x)\right| \leq \frac{5}{6} \times 10^{-6}$ on the entire interval $[0,1.44]$.
b) Write $T_{n}(x)$ for the n you found in a).
c) Find the exact value of $\int_{0}^{1.2} T_{n}\left(x^{2}\right) d x$ and give its decimal value. (Note: you are integrating $T_{n}\left(x^{2}\right), \operatorname{not} T_{n}(x)$.)
d) Theory guarantees that your answer in c) approximates $\int_{0}^{1.2} \sin x^{2} d x$ with accuracy 10^{-6}. From a machine's point of view, which of the two approaches required fewer calculations?
(Note: $\frac{5}{6}$ and 1.44 appear in a) because $\frac{5}{6}=\frac{1}{1.2-0}$ and $1.44=1.2^{2}$.)

