Calculus 2 - Exam 3
 MAT 308, Fall 2011 - D. Ivanšić

Name:
Show all your work!

Find the following integrals:

1. (10pts) $\int x^{5} \ln x d x=$
2. (15pts) $\int \sin ^{5} x \cos ^{4} x d x=$
3. (15pts) $\int e^{3 x} \cos (5 x) d x=$

Use trigonometric substitution to evaluate the following integrals. Don't forget to return to the original variable where appropriate.
4. (15pts) $\int x^{3} \sqrt{x^{2}-1}=$
5. $(15 \mathrm{pts}) \int_{0}^{\sqrt{3}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x=$

Use the method of partial fractions to find the following integrals.
6. (12pts) $\int \frac{3 x+18}{(x-1)(x+2)} d x=$
7. $(18 \mathrm{pts}) \int \frac{x^{2}-13 x+6}{(x-5)\left(x^{2}+9\right)} d x=$

Bonus (10pts) How do those reduction formulas come about? For example, consider the one that reduces $\int \sin ^{n} x d x$ to $\int \sin ^{n-2} x d x$. Start as follows:

$$
\int \sin ^{n} x d x=\int \sin ^{n-2} x \sin ^{2} x d x=\int \sin ^{n-2} x\left(1-\cos ^{2} x\right) d x=\ldots
$$

Continue by splitting the last integral and applying a clever integration by parts on $\int \sin ^{n-2} x \cos ^{2} x d x$. Soon you will arrive at the reduction formula for $\int \sin ^{n} x d x$.

