Calculus 2 - Exam 2
MAT 308, Fall 2011 - D. Ivanšić

Name:
Show all your work!

1. (14pts) Consider the region enclosed by the curves $y=x^{2}-x$ and $y=-x^{2}+x+12$.
a) Sketch the region.
b) Set up the integral that computes its area. Do not evaluate the integral.
2. (20pts) Consider the region bounded by the curves $y=e^{x}$ and $y=1-x$ and $x=-2$.
a) Find the volume of the solid obtained by rotating this region about the $x$-axis.
b) Sketch the solid and a typical cross-section or cylindrical shell, depending on the method you are using.
3. (20pts) Consider the region bounded by the curves $y=x^{2}$ and $y=\sqrt{x}$.
a) Find the volume of the solid obtained by rotating this region about the $y$-axis.
b) Sketch the solid and a typical cross-section or cylindrical shell, depending on the method you are using.
4. (12pts) The base of a solid is the disk bounded by the circle $x^{2}+y^{2}=16$. The crosssections of the solid perpendicular to the $y$-axis are rectangles whose height is $1 / 3$ of their width.
a) Sketch the solid and a typical cross-section.
b) Set up the integral for the volume of the solid. Do not evaluate the integral.
5. (18pts) A tank is in the form of an upright circular cone with base radius 3 m and height 15 m (vertex is at top). Set up the integral for the work needed to fill this tank with water, assuming the water is raised from base level. Assume $g=10$ and water density $=$ $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Do not evaluate the integral, but do draw copious pictures!
6. (16pts) Consider the function $f(x)=1-x^{2}$ over the interval $[-1,1]$.
a) What is the average value of the function over the interval?
b) What is the geometric interpretation of average value? Sketch a picture.
c) Verify the conclusion of the Mean Value Theorem for integrals, that is, find values of $c$ in the interval so that $f_{\text {ave }}=f(c)$.

Bonus (10pts) Consider the region from problem 2 again, but now rotate it around the vertical line $x=3$.
a) Set up the integral for the volume of the resulting solid. Do not evaluate the integral. b) Sketch the solid and a typical cross-section or cylindrical shell, depending on the method you are using.

