Calculus 2 - Exam 1

MAT 308, Fall 2011 - D. Ivanšić

Name: \qquad

Differentiate and simplify where appropriate:

1. $(6 \mathrm{pts}) \frac{d}{d t}(\sqrt{t}+\sqrt[3]{t})(\sqrt{t}-\sqrt[3]{t})=$
2. (5pts) $\frac{d}{d x}\left(5 x^{2}-4 x\right) e^{x}=$
3. $(8 \mathrm{pts}) \frac{d}{d z} \frac{z^{2}+\sqrt{z}}{z^{2}-\sqrt{z}}=$
4. $(4 \mathrm{pts}) \frac{d}{d x} \frac{1}{x^{2}-3 x+1}=$
5. (8pts) $\frac{d}{d \theta} \frac{\cos \theta}{\sin ^{2} \theta}=$
6. $(6 \mathrm{pts}) \frac{d}{d x}\left(x^{2}+3\right) \ln \left(x^{2}+3\right)=$
7. (5pts) Let $f(x)=\cos (3 x)$. What is $f^{(71)}(x)$, the 71st derivative of f ? Justify your answer.

Use L'Hopital's rule to find the following limits:
8. $(6 \mathrm{pts}) \lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x}}=$
9. (10pts) $\lim _{x \rightarrow \infty}\left(x^{2}+x-2\right)^{\frac{1}{x}}=$

Find the following antiderivatives.
10. $(7 \mathrm{pts}) \int 3 x^{8}-\frac{1}{1+x^{2}}+\sqrt[4]{x^{17}}+\pi^{4} d x=$
11. (3pts) $\int e^{5 x-7} d x=$
12. $(7 \mathrm{pts}) \int \frac{x^{2}+1}{\sqrt{x}} d x=$

Use the substitution rule in the following integrals:
13. $(7 \mathrm{pts}) \int \frac{2 x-3}{x^{2}-3 x+1} d x=$
14. (10pts) $\int_{0}^{\frac{\pi}{6}} \frac{\sin x}{\cos ^{3} x} d x=$
15. (8 pts) Find the equation of the tangent line to the curve $y=x^{2}+3 x-10$ at the point $(1,-6)$. Sketch the curve and the tangent line on the same graph.

Bonus. (10pts) The rear inside cover of our book claims that

$$
\int \frac{x^{2} d x}{\sqrt{a^{2}-x^{2}}}=-\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \arcsin \frac{x}{a}+C
$$

Verify this formula. Hint: it's not about figuring out the way to do the integral.

