Calculus 2 — Exam 2 Name: S M’E 0‘1“*‘-«
MAT 308, Spring 2020 — D. Ivansié Show all your work!

1. (24pts) The region bounded by the curves y = z? and y = #%8¢ is rotated around the
z-axis. 2=k
a) Sketch the solid and a typical cross-sectional washer.
b) Set up the integral for the volume of the solid.
c) Evaluate the integral.
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2. (14pts) Consider the triangle bounded by lines y = Jr+land y=—zand y = 2.
a) Sketch the triangle.

b) Set up the integral that computes its area. Simplify, but do not evaluate the integral.
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3. (16pts) There are infinitely many regions that are above line y = % and below the curve
y = cosx. Rotate the region that intersects the y-axis about the y-axis to get a solid.
a) Sketch the solid and a typical cylindrical shell.
b) Set up the integral for the volume of the solid using the shell method. Simplify, but do
not evaluate the integral.
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4. (16pts) The base of a solid is the triangle in the xy-plane with vertices A = (0,0),
B = (2,0) and C = (0.4). The cross-sections of the solid perpendicular to the z-axis are
half-disks whose diameters lie in the triangle.

a) Sketch the solid and a typical cross-section.

b) Set up the integral for the volume of the solid. Simplify, but do not evaluate the integral.
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5. (14pts) Compute the length of the curve y = 2z7 —;%:.-;% fromr=1tozx=4.
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6. (16pts) A leaky bucket is lifted from a well with depth 20 meters to the surface. The
bucket weighs lkg, starts with 10 liters of water at bottom and has only 2 liters by the time
it is pulled to the top (assume it empties at a constant rate and rope weight is negligible).
Set up the integral for the work needed to lift the bucket from the bottom of the well to
the top. Assume g = 10 and water density = lkg/liter. Simplify, but do not evaluate the

integral.
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Bonus (10pts) Consider the surface obtained by rotating the curve y = €%, -1 < z < 1,
around the z-axis.

a) Set up the integral for surface area in variable z.

b) Set up the integral for surface area in variable y.

¢) Do not evaluate the integrals, but verify that they are equal.
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