Calculus 2 — Exam 2 MAT 308, Spring 2020 — D. Ivanšić

Name: Saul Ocean

Show all your work!

- 1. (24pts) The region bounded by the curves $y = x^2$ and $y = x^2$ is rotated around the
- a) Sketch the solid and a typical cross-sectional washer.
- b) Set up the integral for the volume of the solid.
- c) Evaluate the integral.

$$|V| = \int_{-2}^{1} |x(t)| dt = \int_{-2}^{1} |Tr_{1}|^{2} - |Tr_{1}|^{2} dx$$

$$= |T| \int_{-2}^{1} (2-x)^{2} - (x^{2})^{2} dx = |T| \int_{-2}^{1} (4-4x+x^{2}-x^{4}) dx$$

Intersections: X= 2-XX x+x-2=0 (x+2)(x-1)=0 x=-2,1

$$d = \pi \left(\frac{4(1-(2))}{4(1-(2))} + \left(-2x^2 + \frac{x^3}{3} - \frac{x^5}{5} \right) \right)^{\frac{1}{2}}$$

$$= \pi \left(\frac{4\cdot 3}{3} - 2\left(\frac{1-4}{3} \right) + \frac{1}{3}\left(\frac{1-(-8)}{5} \right) - \frac{1}{5}\left(\frac{1-(-32)}{5} \right)$$

$$= \pi \left(\frac{12+6+3-\frac{23}{5}}{5} \right) = \pi \left(\frac{21-\frac{23}{5}}{5} \right) = \pi \frac{105-33}{5}$$

$$= \frac{72\pi}{5}$$

- 2. (14pts) Consider the triangle bounded by lines $y = \frac{1}{2}x + 1$ and y = -x and y = 2.
- a) Sketch the triangle.
- b) Set up the integral that computes its area. Simplify, but do not evaluate the integral.

L) Ara easier
$$y=\frac{1}{2}x+1$$
 $y=-x$
in y-variable: $x=2y-2$ $x=-y$
 $\begin{cases} 2y-2-(-y)dy=53y-2dy\\ 2/3 \end{cases}$

Intersection = x+1=-X

$$\frac{3}{2}X = -1 \\ X = -\frac{2}{3}, 5 = \frac{2}{3}$$

$$\frac{1}{2}X + 1 = 2$$

$$\frac{1}{2}X = 1, X = 2$$

$$\frac{3}{2}x = -1$$

$$x = -\frac{2}{3}, 5 = \frac{2}{3}$$
Done in variable x regimes two integrals:
$$\frac{-\frac{2}{3}}{5} = \frac{2}{5}$$

$$\int_{-2/3}^{-2/3} (2 - (-x)) dx + \int_{-2/3}^{2} 2 - (\frac{1}{5}x + 1) dx = \int_{-2}^{2} x + 2 dx + \int_{-\frac{2}{3}}^{2} 1 - \frac{1}{2}x dx$$

- 3. (16pts) There are infinitely many regions that are above line $y = \frac{1}{2}$ and below the curve $y = \cos x$. Rotate the region that intersects the y-axis about the y-axis to get a solid.
- a) Sketch the solid and a typical cylindrical shell.
- b) Set up the integral for the volume of the solid using the shell method. Simplify, but do not evaluate the integral.

L)
$$V = \int_{0}^{\pi/3} S(x) dx = \int_{0}^{\pi/3} 2\pi r \cdot k dx$$

= $\int_{0}^{\pi/3} 2\pi \cdot x \cdot (\cos x - \frac{1}{2}) dx$
= $\int_{0}^{\pi/3} I[x] (2\cos x - 1) dx$

- **4.** (16pts) The base of a solid is the triangle in the xy-plane with vertices A = (0,0), B = (2,0) and C = (0.4). The cross-sections of the solid perpendicular to the x-axis are half-disks whose diameters lie in the triangle.
- a) Sketch the solid and a typical cross-section.
- b) Set up the integral for the volume of the solid. Simplify, but do not evaluate the integral.

1.)
$$V = \int_{0}^{2} A(x) dx = \int_{0}^{2} \frac{1}{2} \pi r^{2} dx$$

$$= \int_{0}^{2} \frac{1}{2} \pi (2-x)^{2} dx$$

$$= \int_{0}^{2} \frac{1}{2} (x-2)^{2} dx$$

5. (14pts) Compute the length of the curve $y = \frac{2}{3}x^{\frac{3}{2}} - 2x^{\frac{1}{2}}$ from x = 1 to x = 4.

$$5' = \frac{2}{5} \cdot \frac{2}{5} \times \frac{1}{2} - \frac{1}{4} \times \frac{1}{2}$$

$$= \sqrt{x} + \frac{1}{4\sqrt{x}}$$

$$length = \int_{1}^{4} \sqrt{1 + (\sqrt{x} + \frac{1}{4\sqrt{x}})^{2}} dx = \int_{1}^{4} \sqrt{1 + x - \frac{1}{2} + \frac{1}{16x}} dx = \int_{1}^{4} \sqrt{x + \frac{1}{2} + \frac{$$

6. (16pts) A leaky bucket is lifted from a well with depth 20 meters to the surface. The bucket weighs 1kg, starts with 10 liters of water at bottom and has only 2 liters by the time it is pulled to the top (assume it empties at a constant rate and rope weight is negligible). Set up the integral for the work needed to lift the bucket from the bottom of the well to the top. Assume g = 10 and water density = 1kg/liter. Simplify, but do not evaluate the integral.

Volume of voder in bucket at height xi*:
$$10-\frac{2}{5}X_{1}^{*}, \quad \text{mass of bucket ust weder:}$$

$$1+(10-\frac{2}{5}X_{1}^{*})\cdot |= 11-\frac{2}{5}X_{1}^{*}$$

Bonus (10pts) Consider the surface obtained by rotating the curve $y = e^x$, $-1 \le x \le 1$, around the x-axis.

- a) Set up the integral for surface area in variable x.
- b) Set up the integral for surface area in variable y.
- c) Do not evaluate the integrals, but verify that they are equal.

a)
$$e^{\frac{1}{2}} \int 2\pi r ds = \int 2\pi e^{x} \sqrt{1+(e^{x})^{2}} dx = 2\pi \int e^{x} \sqrt{1+e^{2x}} dx$$
 $5 = e^{x}, y' = e^{x}$
 $e^{x} \int 2\pi r ds = \int 2\pi \int y' \int (1+\frac{1}{2})^{2}} dy = \int 2\pi \int y' \int (1+\frac{1}{2})^{2}} dy$
 $e^{x} \int 2\pi r ds = \int 2\pi \int y' \int (1+\frac{1}{2})^{2}} dy$
 $e^{x} \int 2\pi \int y' \int 1 dy$
 $e^{x} \int y' \int (1+\frac{1}{2})^{2}} dy = \int (1+\frac{1}{2})^{2}} dx$
 $e^{x} \int 2\pi \int y' \int 1 dy$
 $e^{x} \int (1+\frac{1}{2})^{2}} dy = \int (1+\frac{1}{2})^{2}} dx$
 $e^{x} \int (1+\frac{1}{2})^{2}} dy = \int (1+\frac{1}{2})^{2}} dx$
 $e^{x} \int$