Mathematical Reasoning — Exam 3 MAT 312, Fall 2017 — D. Ivanšić

Name:

Show all your work!

1. (14pts) Let A, B and C be subsets of some universal set U.

- a) Use Venn diagrams to draw the following subsets (shade).
- b) Among the four sets, two are equal. Use set algebra to show they are equal.

$$(B \cap C) - A$$

$$(A \cap B) \cap C$$

$$(A \cap B) \cap C \qquad (B - A) \cap C$$

$$(A-B) \cup (B-C)$$

2. (12pts) Let U be the set of integers. Consider the sets $A = \{k \in \mathbb{Z} \mid k \equiv 2 \pmod{4}\}$, $B = \{k \in \mathbb{Z} \mid k \text{ is divisible by } 4\}, C = \{k \in \mathbb{Z} \mid k < 0\} \text{ and write the following subsets using }$ the roster method (pattern needs to be obvious).

$$A \cap C =$$

$$B - C =$$

$$C^c =$$

$$(A \cup B) \cap C =$$

$$C - (A \cup B) =$$

$$B - A =$$

- **3.** (12pts) Let $A = \{k \in \mathbb{Z} \mid k \equiv 1 \pmod{3}\}$ and $B = \{k \in \mathbb{Z} \mid k \equiv 4 \pmod{6}\}$.
- a) Is $A \subseteq B$? Prove or disprove.
- b) Is $B \subseteq A$? Prove or disprove.

- **4.** (16pts) Let $f: \mathbf{R} \times \mathbf{R} \to [0, \infty)$ be given by $f(x, y) = x^2 + y^2$.
- a) Is f surjective? Justify.
- b) Is f injective? Justify.
- c) Determine the set of preimages of 5. List at least three elements of this set and illustrate it in the plane.

- **5.** (14pts) Let $\mathbf{Z}_4 = \{0, 1, 2, 3\}$, and let $f, g : \mathbf{Z}_4 \to \mathbf{Z}_4$, $f(x) = x^2 + 4x \pmod{4}$, $g(x) = x^2 4 \pmod{4}$.
- a) Write the table of function values for f and g.
- b) The formulas for f and g are different. Are the functions f and g equal?
- c) What is the set of preimages of 3 under f?
- d) What is the set of preimages of 0 under f?
- e) Show that $x^2 + 4x \equiv x^2 4 \pmod{4}$ for every $x \in \mathbf{Z}_4$. This implies that f(x) = g(x) for every $x \in \mathbf{Z}_4$.

- **6.** (10pts) Let $f(x) = (x-2)^2 + 7$ and assume the codomain is **R**.
- a) What subset of real numbers is the natural domain for this function?
- b) What is the range of this function? Justify your answer.

- 7. (10pts) Draw arrow diagrams between two copies of **Z** below that illustrate a function $f: \mathbf{Z} \to \mathbf{Z}$ that is:
- a) a surjection that is not an injection
- b) an injection that is not a surjection

$$\ldots -3$$
 -2 -1 0 1 2 $3 \ldots$

 $\dots -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \dots$

$$\ldots -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \ldots$$

$$\ldots -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \ldots$$

8. (12pts) Let A, B be subsets of a universal set U. Prove that $A \subseteq B$ if and only if $A \cup B = B$.

Bonus. (10pts) Let $A = \{x \in \mathbf{R} \mid x \neq -1, 1\}$ and let $f : A \to \mathbf{R}$, $f(x) = \frac{2}{1 - x^2}$. Determine the range of f.