```
Mathematical Reasoning - Exam 2
MAT 312, Fall 2017 - D. Ivanšić
Name:
Show all your work!
```

1. (14pts) Prove: the sum of squares of three consecutive integers always gives remainder 2 when divided by 3 .
2. (14pts) Prove using induction: for every integer $n \geq 0,1+3+3^{2}+\cdots+3^{n}=\frac{3^{n+1}-2}{2}$.
3. (16pts) Let $a, b \neq 0$ be real numbers. Two of the following statements are true, and one is false. Prove the true ones (one is basic and needs only a little explanation), and justify why the remaining one is false.
a) If a and b are rational, then $a b$ is rational.
b) If a is rational and b is irrational, then $a b$ is irrational.
c) If a and b are irrational, then $a b$ is irrational.
4. (18pts) Consider the statement: for every integer n, n is divisible by 8 if and only if n^{2} is divisible by 8 .
a) Write the statement as a conjunction of two conditional statements.
b) Determine whether each of the conditional statements is true, and write a proof, if so.
c) Is the original statement true?
5. (14pts) We have shown on homework: for every integer n, if n^{2} is even, then n is even. Use this proposition to show directly that $\sqrt{8}$ is irrational, that is, without using the fact that $\sqrt{2}$ is irrational.
6. (10pts) Use the triangle inequality to prove that for all real numbers c, d, $2|c| \leq|c+d|+|c-d|$.
7. (14pts) Prove that for all real numbers $x, y, x^{2}+y^{2} \geq 6 x-9$.

Bonus. (10pts) Show that the number $345,237,211,897,873,929,146$ is not a square of any integer. Hint: use congruence, but $(\bmod 5)$ and $(\bmod 10)$, like in our homework problem, will not work.

