Mathematical Reasoning - Exam 1
 MAT 312, Fall 2017 - D. Ivanšić

Show all your work!

Consider the following sentences. If a sentence is a statement, determine whether it is true (and justify your answer). If it is an open sentence, find its truth set.

1. (2pts) $2<5$ or $3 \geq 5$
2. (2pts) If the square of a real number is negative, then that number is negative.
3. (3pts) (universal set=Z) $2 x^{2}=5 x+3$
4. (4pts) There exists a $y \in \mathbf{R}$ such that $y^{3}+y-5=0$.
5. (3pts) (universal set $=\mathbf{R}$) $3 x+5<2 x+4$

Negate the following statements.
6. (3pts) If you know a little bit of English, you can go far.
7. (3pts) Kim Jong Un launches a rocket and takes a bath.
8. (8pts) Use a truth table to prove that $(\neg P \vee Q) \wedge(P \vee \neg Q) \wedge \neg P \equiv \neg P \wedge \neg Q$. (Use however many columns you need.)

P	Q								
T	T								
T	F								
F	T								
F	F								

9. (12pts) Use previously proven logical equivalences to prove the equivalence $(P \Longrightarrow Q) \Longrightarrow R \equiv(\neg P \Longrightarrow R) \wedge(Q \Longrightarrow R)$. Do not use a truth table.
10. (4pts) Write the converse and contrapositive of the statement: if a real number is greater than 5 , then its absolute value is greater than 5 .

Converse:

Contrapositive:
11. (8pts) Suppose the following statements are true:

If I ate ice cream, then I ate strawberries.
I did not eat ice cream or I did not eat strawberries.
Determine truth value of the following statement and justify: I ate ice cream.
12. (4pts) Use the roster method to write the set $\left\{x \in \mathbf{Z} \mid x^{2}\right.$ is odd and smaller than 30$\}$.
13. (7pts) An integer n is divisible by 7 if $n=7 k$ for some integer k.
a) Write the definition using symbols for quantifiers.
b) Negate the definition using symbols for quantifiers.
c) Finish the sentence: "An integer n is not divisible by 7 if \ldots "
14. (10pts) There exists an integer n such that for every integer m, if $m n=24$, then $|n|<6$.
a) Write this statement using symbols.
b) Write the negation of the statement using symbols.
c) Write the negation of the statement in English.
15. (12pts) Let \mathbf{Z} be the universal set. The following is an open sentence in x :

$$
(\exists y \in \mathbf{Z})(x+2 y=5)
$$

a) If $x=1$, is the statement true?
b) If $x=6$, is the statement true?
c) Find the truth set (the x 's) of the above statement.
16. (15pts) We will call an integer n type-0, type-1, type-2, or type-3 if it can be written in the form $n=4 k, n=4 k+1, n=4 k+2$, or $n=4 k+3$, respectively, for some integer k. Show that if n is a type- 3 integer, then $n^{2}-n$ is a type- 2 integer. Start with a know-show table if you find it helpful.

Bonus. (10pts) Consider the general quadratic equation $a x^{2}+b x+c=0$. Prove the following statement: if $a>0, b<0$ and $c>0$ and the equation has a real solution, then both solutions are positive.

