Calculus 2 — Final Exam MAT 308, Spring 2020 — D. Ivanšić

Name:

Show all your work!

If you are filming yourself as you take the exam for later upload, write **code: 32FE5Y** on the first sheet of paper with your solutions. Then hold the paper at the beginning so the code can be captured by the camera.

Find the following integrals:

1. (6pts)
$$\int xe^{2x} dx =$$

2. (10pts)
$$\int \sec^4 x \tan^3 x \, dx =$$

3. (12pts) Use trigonometric substitution to evaluate the integral.

$$\int \frac{x^3}{\sqrt{9-x^2}}\,dx =$$

4. (6pts) Determine whether the following improper integral converges, and, if so, evaluate it.

$$\int_0^\infty \frac{1}{1+x^2} \, dx =$$

5. (16pts) The region bounded by the curves $y = x^2 - 4x$ and $y = 30 - x^2$ is rotated around the x-axis.

- a) Sketch the solid and a typical cross-sectional washer.
- b) Set up the integral for the volume of the solid. Simplify, but do not evaluate the integral.

6. (10pts) Justify why the series converges and find its sum.

$$\sum_{n=0}^{\infty} \frac{2^{2n+1}}{7^{n-1}} =$$

7. (14pts) Find the interval of convergence of the series. Don't forget to check the endpoints.

$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{2^{n+1}(n+4)}$$

- 8. (16pts) Let $f(x) = \ln x$.
- a) Find the 3rd Taylor polynomial for f centered at a = 10.
- b) Use Taylor's formula to get an estimate of the error $|R_3|$ on the interval (8, 12).

9. (10pts) A particle moves along the path with parametric equations $x(t) = \cos t$, $y(t) = 4 + \sin^2 t$, $0 \le t \le 2\pi$. Eliminate the parameter in order to sketch the path of motion and then describe the motion of the particle.

10. (24pts) The integral $\int_0^1 \cos(x^2) dx$ is given. It cannot be found by antidifferentiation, since the antiderivative of $\cos(x^2)$ is not expressible using elementary functions.

a) Write the expression you would use to calculate M_6 , the midpoint rule with 6 subintervals. All the terms need to be explicitly written, do not use f in the sum.

b) The graph of y'' is shown: use it to find the error estimate for M_n in general.

c) What should n be in order for M_n to give you an error less than 10^{-4} ?

d) Use a known power series for to find a power series for the above integral.

e) How many terms of the power series are needed to estimate the integral to accuracy 10^{-4} ? Write the estimate as a sum (you do not have to simplify it).

f) Which method requires less computation to evaluate the integral with accuracy 10^{-4} , midpoint formula or series?

11. (10pts) In another attempt to fight the coronavirus, a bottle of disinfectant is thrown from the origin so that its position is given by x(t) = 15t, $y(t) = 16t - 5t^2$, where length is measured in meters, time in seconds. Find the equation of the tangent line to this curve when t = 2.

12. (16pts) Find the area inside the polar curve $r = 2\cos\theta$ and outside r = 1. Draw a picture showing the area you are computing.

Bonus. (15pts) The graph of the parametric curve $x(t) = t^3 - 12t$, $y(t) = -t^2 - 2t + 8$ is shown. Compute the area enclosed by the loop.

