Calculus $2-$ Exam 3
MAT 308, Spring $2020-$ D. Ivanšić

Name:
Show all your work!
Find the limits, if they exist.

1. (6pts) $\lim _{n \rightarrow \infty} \frac{4^{n-1}}{3^{2 n}}=$
2. (6pts) $\lim _{n \rightarrow \infty} \cos \frac{n \pi}{2}=$
3. (10pts) Find the limit. Use the theorem that rhymes with what a person might do, if an irritant enters their nose.
$\lim _{n \rightarrow \infty} \frac{\sin n+2 \cos n}{3 n-7}$
4. (6pts) Write the series using summation notation:
$\frac{9}{1}-\frac{27}{1 \cdot 2}+\frac{81}{1 \cdot 2 \cdot 3 \cdot 4}-\frac{243}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}+\cdots=$
5. (12pts) Justify why the series converges and find its sum.
$\sum_{n=2}^{\infty}(-1)^{n} \frac{5^{n-1}}{3^{2 n+1}}=$

Determine whether the following series converge and justify your answer.
6. (6pts) $\sum_{n=1}^{\infty} e^{\frac{1}{n}}$
7. (12pts) $\sum_{n=1}^{\infty} \frac{\sqrt{n}+3}{n^{2}-2 n-3}$
8. (22pts) Consider the alternating series $\sum_{n=2}^{\infty}(-1)^{n} \frac{n^{2}}{n^{3}+7}$.
a) Show that the sequence $\frac{n^{2}}{n^{3}+7}$ is decreasing from some point on.
b) Show the limit of the sequence in a) is 0 .
c) Is the series convergent?
d) Is the series absolutely convergent? Use the integral test.

Determine whether the following series converge using the root or ratio test.
9. (10pts) $\sum_{n=3}^{\infty} \frac{5^{3 n}}{(n+1)!}$
10. (10pts) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(\arctan n)^{n}}{n^{2}+4 n}$

Bonus. (10pts) Does $\sum_{n=0}^{\infty} \frac{2^{n}+3^{n}}{4^{n}+5^{n}}$ converge? (Hint: root test and dominant terms.)

