Calculus 2 - Exam 1
 MAT 308, Spring 2020 - D. Ivanšić

Name: \qquad
Find the following integrals:

1. $(6 \mathrm{pts}) \int x \cos (3 x) d x=$
2. (9pts) $\int \sin ^{3} x \cos ^{3} x d x=$

Determine whether the following improper integrals converge, and, if so, evaluate them.
3. (8pts) $\int_{1}^{\infty} \frac{x+1}{x^{3}} d x=$
4. $(8 \mathrm{pts}) \int_{0}^{\infty} \frac{1}{1+x^{2}} d x=$

Use trigonometric substitution to evaluate the following integrals. Don't forget to return to the original variable where appropriate.
5. (12pts) $\int \frac{x^{3}}{\sqrt{x^{2}+7}} d x=$
6. $(14 \mathrm{pts}) \int_{0}^{\sqrt{2}} x^{2} \sqrt{4-x^{2}} d x=$

Use the method of partial fractions to find the following integrals.
7. $(14 \mathrm{pts}) \int \frac{3 x^{3}-5 x^{2}+9 x-5}{\left(x^{2}+1\right)^{2}} d x=$
8. (9pts) Use comparison to determine whether the improper integral $\int_{0}^{\frac{\pi}{4}} \frac{\cos x}{x} d x$ converges.
9. (20pts) The integral $\int_{0}^{3} e^{-x^{2}} d x$ is given. It cannot be found by antidifferentiation, since the antiderivative of $e^{-x^{2}}$ is not expressible using elementary functions.
a) Write the expression you would use to calculate M_{6}, the midpoint rule with 6 subintervals. All the terms need to be explicitly written, do not use f in the sum.
b) Find $y^{\prime \prime}$ for $y=e^{-x^{2}}$.
c) The graph of $y^{\prime \prime}$ is shown: use it to find the error estimate for M_{n} in general.
d) Estimate the error for M_{6}.
e) What should n be in order for M_{n} to give you an error less than 10^{-4} ?

Bonus (10pts) Find the reduction formula that reduces $\int \frac{d x}{\left(x^{2}+a^{2}\right)^{n}}$ to $\int \frac{d x}{\left(x^{2}+a^{2}\right)^{n-1}}$. Start on $\int \frac{d x}{\left(x^{2}+a^{2}\right)^{n-1}}$ with an integration by parts, then rewrite an x^{2} in the new integral as $x^{2}+a^{2}-a^{2}$ and see what you can do.

