Calculus 2 — Exam 1	Name:	
MAT 308, Spring 2020 — D. Ivanšić		Show all your work!

Find the following integrals:

1. (6pts)
$$\int x \cos(3x) dx =$$

$$2. (9pts) \quad \int \sin^3 x \cos^3 x \, dx =$$

Determine whether the following improper integrals converge, and, if so, evaluate them.

3. (8pts)
$$\int_{1}^{\infty} \frac{x+1}{x^3} dx =$$

4. (8pts)
$$\int_0^\infty \frac{1}{1+x^2} \, dx =$$

Use trigonometric substitution to evaluate the following integrals. Don't forget to return to the original variable where appropriate.

5. (12pts)
$$\int \frac{x^3}{\sqrt{x^2+7}} \, dx =$$

6. (14pts)
$$\int_0^{\sqrt{2}} x^2 \sqrt{4 - x^2} \, dx =$$

Use the method of partial fractions to find the following integrals.

7. (14pts)
$$\int \frac{3x^3 - 5x^2 + 9x - 5}{(x^2 + 1)^2} dx =$$

8. (9pts) Use comparison to determine whether the improper integral $\int_0^{\frac{\pi}{4}} \frac{\cos x}{x} dx$ converges.

9. (20pts) The integral $\int_0^3 e^{-x^2} dx$ is given. It cannot be found by antidifferentiation, since the antiderivative of e^{-x^2} is not expressible using elementary functions.

a) Write the expression you would use to calculate M_6 , the midpoint rule with 6 subintervals. All the terms need to be explicitly written, do not use f in the sum.

b) Find y'' for $y = e^{-x^2}$.

c) The graph of y'' is shown: use it to find the error estimate for M_n in general.

d) Estimate the error for M_6 .

e) What should n be in order for M_n to give you an error less than 10^{-4} ?

Bonus (10pts) Find the reduction formula that reduces $\int \frac{dx}{(x^2 + a^2)^n}$ to $\int \frac{dx}{(x^2 + a^2)^{n-1}}$. Start on $\int \frac{dx}{(x^2 + a^2)^{n-1}}$ with an integration by parts, then rewrite an x^2 in the new integral as $x^2 + a^2 - a^2$ and see what you can do.