College Algebra — Exam 1 MAT 140, Fall 2020 — D. Ivanšić

Name: Saul Ocean

Show all your work!

1. (8pts) Use the graph of the function f at right to answer the following questions.

a) Find:
$$f(2) = 4$$
 $f(-6) = n + defined$

b) What is the domain of
$$f$$
? $(-5, 4)$

c) What is the range of
$$f$$
? $\left(-3, 5\right)$

d) What are the solutions of the equation f(x) = 3?

$$X = -3, 3$$

3. (5pts) Write the equation of the line whose x-intercept is 3, and y-intercept is -5.

Goes through Slape:
$$-5-0 = \frac{5}{3}$$

(3,0) $y = \frac{5}{3} \times -5$

4. (10pts) Find the equation of the line (in form y = mx + b) that is perpendicular to the line x + 4y = -8 and passes through (2, -1). Draw both lines.

$$x+4y=-8$$
 Perp. l, i.e.
 $4y=-x-8$] $+4$ $y-(-1)=4(x-2)$
 $y=-\frac{x}{4}-2$ $y=4x-8-1$
 $5|qx=-\frac{1}{4}$ $y=9x-9$
 $5|qpe=-\frac{1}{4}$ $y=9x-9$

5. (8pts) Draw the triangle with vertices A = (0,0), B = (3,2) and C = (3,-2) in the coordinate plane. Use the Pythagorean theorem to determine if the triangle is a right triangle.

$$d_{Ab} = \sqrt{(3-0)^2 + (2-0)^2} = \sqrt{9+4} = \sqrt{13}$$

$$d_{BC} = \sqrt{(7-3)^2 + (-4-2)^2} = \sqrt{16+36} = \sqrt{52}$$

$$d_{AC} = \sqrt{(7-0)^2 + (-4-0)^2} = \sqrt{49+16} = \sqrt{65}$$

$$\sqrt{12} + \sqrt{52} = \sqrt{65}$$

6. (9pts) Let $f(x) = x^2 + 4x - \frac{1}{\sqrt{x+1}}$. Find the following (simplify where appropriate).

$$f(3) = 3^{\frac{1}{4}} 4.3 + \frac{1}{\sqrt{3+1}} = 2+12 + \frac{1}{2} = 21\frac{1}{2}$$
$$= \frac{43}{2}$$

$$f(3) = 3^{\frac{1}{4}} + 3 + \frac{1}{\sqrt{3+1}} = 2 + 12 + \frac{1}{2} = 2 | \frac{1}{2}$$

$$= \frac{43}{2}$$

$$f(-6) = (-6)^{\frac{1}{4}} + 4 \cdot (-6) - \frac{1}{\sqrt{6+1}}$$

$$= \frac{43}{2}$$
is not defined

$$f(\sqrt{u}) = \sqrt{u} + 4\sqrt{u} - \frac{1}{\sqrt{u+1}}$$

$$= u + 4\sqrt{u} - \frac{1}{\sqrt{u+1}}$$

$$f(t-3) = (t-3)^{2} + 4(t-3) - \frac{1}{\sqrt{t-3}+1}$$

$$= t^{2} - 6t + 9 + 4t - 12 - \frac{1}{\sqrt{t-2}}$$

$$= t^{2} - 2t - 3 - \frac{1}{\sqrt{t-2}}$$

7. (9pts) Find the domains of the functions below and write them using interval notation.

$$f(x) = \frac{x-3}{2x-5}$$

$$Can + have 2x-5=0$$

$$2x=5$$

$$x = \frac{5}{2}$$

$$g(x) = \frac{\sqrt{5 - 3x}}{x + 8}$$

$$9(x) = \frac{1}{x+8}$$
Must have:
$$5-3 \times 30$$

$$5 = 3 \times 1 + 3$$

$$1 + 3 \times 20$$

$$2 \times 20$$

$$2 \times 20$$

$$3 \times 20$$

$$3 \times 20$$

$$3 \times 20$$

$$4 \times 20$$

$$4 \times 20$$

$$2 \times 20$$

$$2 \times 20$$

$$3 \times 20$$

$$3 \times 20$$

$$3 \times 20$$

$$4 \times 20$$

$$4$$

 (14pts) Amy and Mitch bicycle along the same road. It takes Mitch 1 hour to travel the road. Amy leaves 12 minutes after Mitch, but gets to the end of the road at the same time as Mitch because she travels 2 mph faster than him.

a) What are the speeds of the cyclists?

b) How long is the road?

b) How long is the road?

Clistume rade time

Amy

$$d = r + 2 - \frac{12}{60} = 1 - \frac{1}{5} = \frac{4}{5}$$

Amy

 $d = r + 2 - \frac{12}{60} = 1 - \frac{1}{5} = \frac{4}{5}$

Amy

 $d = r + 2 - \frac{12}{60} = 1 - \frac{1}{5} = \frac{4}{5}$
 $d = r + 2 - \frac{4}{5}$
 $r = (r + 2) \cdot \frac{4}{5}$
 $r = 4r + 8 - r$
 $r = 8 mph$

Bonus (10pts) Let A = (1, 5) be a point in the plane. Find a point B on the x-axis so that the line through A and B is parallel to the line y = 3x - 1.

$$\begin{array}{c}
A^{=(1)5}\\
y=3\times-1
\end{array}$$

$$\begin{array}{c}
0-5\\
h-1
\end{array} = 3\\
-5=3(h-1)\\
-5=3h-3$$

$$3h=-2\\
h=-\frac{2}{3}$$

$$B=(-\frac{2}{3},0)$$

8. (5pts) Solve and write the solution in interval notation.

$$-7 \le -2x < -1$$
 /=-2

- **9.** (10pts) The diameter of a circle has endpoints (-3,2) and (1,0).
- a) Find the equation of the circle.
- b) Draw the circle in the coordinate plane.

(ender= midpoint of
$$(-3,2)$$
, $(1,0)$
= $(-3+1, 2+0)$ = $(-1,1)$

$$= \sqrt{(1-(-0))^2 + (0-1)^2} = \sqrt{4+1} = \sqrt{5}$$

 (12pts) Ellen plans to invest \$12,000: part at 3.5% simple interest, and the rest at 4.5% simple interest. What is the most she can invest at 3.5% to guarantee receiving \$500 in interest in a year? Solve as an inequality.

X= amount merted at 3.5% 12,000-x = current inested at 4.5%

inter; them 3.5% inv. + inter; them 4.5% inv
$$\geq 500$$
 $0.035 \times .1 + 0.045.(12000 - x).1 \geq 500$
 $0.035 \times + 540 = 0.045 \times \geq 500 | -500$
 $-0.01 \times + 540 \geq 500 | -500 + 0.01 \times$
 $40 \geq 0.01 \times$
 $x \leq \frac{40}{0.01} = 4000$
Ellen can invest at most 4000 at 3.5%