Advanced Calculus 1 - Exam 1
MAT 525/625, Fall 2019 - D. Ivanšić
Name:
Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define a denumerable set.
Theory 2. (3pts) State the multiplicative properties of \mathbf{R}. That is, state the four algebraic properties of \mathbf{R} that deal only with multiplication.

Theory 3. (3pts) State the Completeness Property of R.

Type A problems (5pts Each)

A1. Show using Mathematical Induction that $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$. (Here i is the imaginary unit, $i^{2}=-1$, and recall that $\sin (x+y)=\sin x \cos y+\cos x \sin y$ and $\cos (x+y)=\cos x \cos y-\sin x \sin y)$.

A2. Let A and B be sets, where A is finite. Show: $A \cup B$ is finite if and only if B is finite. You may use the statement that the union of two disjoint finite sets is finite.

A3. If $a, b \in \mathbf{R}$, use only the axiomatic algebraic properties of \mathbf{R} to show that $-(a+b)=$ $(-a)+(-b)$, and $a \cdot(-b)=-a b$.

A4. Show that for all $x, y, z \in \mathbf{R}, \| x-y|-|z-y|| \leq|x-z|$.
A5. If they exist, find a lower bound of S, an upper bound of $S, \inf S$ and $\sup S$. There is no need to justify.
a) $S=\{x \mid x<0\}$
b) $S=\left\{\left.\frac{n-1}{n} \right\rvert\, n \in \mathbf{N}\right\}$

Type B problems (8pts Each)

B1. Show that the collection of two-element subsets of \mathbf{N} is denumerable.
B2. Recall that we set $\frac{a}{b}=a \cdot \frac{1}{b}$. Use only the axiomatic algebraic properties of \mathbf{R} to show the rule for adding fractions: $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$. (You will need to prove an intermediate lemma.)

B3. Show directly that $\sqrt{8}$ is not a rational number, that is, without resorting to knowledge that $\sqrt{2}$ is not rational.

B4. Determine and sketch the set of points in the plane satisfying $|x|-2|y| \leq 4$.
B5. Consider the subset S of $\mathbf{R}, S=\{x \in \mathbf{Q} \mid x>\pi\}$. If they exist, find a lower bound of S, an upper bound of $S, \inf S$ and $\sup S$. Prove the details, including nonexistence of any of the quantities.

B6. Let $S \subset(0, \infty)$ be a nonempty set that is bounded above. Show that $\inf \frac{1}{S}=\frac{1}{\sup S}$. (As expected, $\frac{1}{S}=\left\{\left.\frac{1}{s} \right\rvert\, s \in S\right\}$.)

C1. Show that the set of all functions $\mathbf{N} \rightarrow\{0,1\}$ is uncountable. Hint: any function $a: \mathbf{N} \rightarrow\{0,1\}$ may be thought of as a sequence of 0 's and 1 's.

C2. Let S be a bounded nonempty subset of \mathbf{R}.
a) Show by example that, in general, $\sup |S| \neq|\sup S|$.
b) Figure out the correct expression for sup $|S|$ and prove it. Some homework statements may be helpful here, and you may use them without proof.

Advanced Calculus 1 - Exam 2 MAT 525/625, Fall 2019 - D. Ivanšić

Name: Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when the limit of a sequence $\left(x_{n}\right)$ is x.
Theory 2. (3pts) State the squeeze theorem for sequences.
Theory 3. (3pts) State the Cauchy Convergence Theorem.

Type A problems (5pts Each)

A1. Use the definition of the limit to show $\lim \frac{n+3}{5 n+4}=\frac{1}{5}$.
A2. Find $\lim \left(1+\frac{1}{n+1}\right)^{n-1}$.
A3. Find $\lim \sqrt[n]{n^{2}+4 n+7}$.
A4. Use the "ratio test" or other method to find the limit of the sequence $\frac{b^{n}}{n!}, b>0$.
A5. Prove the extended limit law $L+\infty=\infty$. That is, use the definition to show: if $\lim x_{n}=L \in \mathbf{R}$ and $\lim y_{n}=\infty$, then $\lim \left(x_{n}+y_{n}\right)=\infty$.

A6. Use the definition to show that the sequence $x_{n}=\frac{n}{n+6}$ is Cauchy.

Type B problems (8pts Each)

B1. Let the sequence x_{n} be recursively given by: $x_{1}=1, x_{n+1}=3+\sqrt{2 x_{n}+1}$. Show that this sequence converges and find its limit.

B2. Prove the limit law $\lim \left(x_{n} \cdot y_{n}\right)=\lim x_{n} \cdot \lim y_{n}$.
B3. Let $a>0$ and $b>1$. Find $\lim \frac{n^{a}}{b^{n}}$.
B4. Show that if a sequence of positive numbers $\left(x_{n}\right)$ is unbounded, then there exists a subsequence $\left(x_{n_{k}}\right)$ such that $\lim x_{n_{k}}=\infty$.

B5. Let the sequence x_{n} be recursively given by: $x_{1}>0, x_{n+1}=\frac{1}{3+x_{n}}$. Show that this sequence is contractive and find its limit.

B6. Suppose that for two positive sequences $\left(x_{n}\right)$ and $\left(y_{n}\right), \lim x_{n} y_{n}=\infty$ and $\left(x_{n}\right)$ is bounded. Show that $\lim y_{n}=\infty$.

B7. Let $\lim x_{n}=x$ and $\lim y_{n}=y$, where $x<y, x, y \in \mathbf{R}$, and let $z_{n}=\max \left\{x_{n}, y_{n}\right\}$. Show that $\lim z_{n}=y$.

C1. Let $\left(x_{n}\right)$ be a bounded sequence that does not converge to x. (It does not mean it converges to some other number.) Show $\left(x_{n}\right)$ has a subsequence that converges to a number y, where $y \neq x$.

C2. Let $x_{n}=\sqrt[n]{n!}$.
a) Show $\left(x_{n}\right)$ is increasing.
b) Show $n!\geq k!k^{n-k}$ for every $k=1,2, \ldots, n$.
c) Fixing a k, use b) to get an inequality that will give you the limit of $\left(x_{n}\right)$.

Advanced Calculus 1 - Exam 3 MAT 525/625, Fall 2019 - D. Ivanšić

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when a function $f: A \rightarrow \mathbf{R}$ is bounded on a neighborhood of c, a cluster point of A.

Theory 2. (3pts) Define what $\lim _{x \rightarrow \infty} f(x)=L$ means.
Theory 3. (3pts) State the limit law for quotients.

Type A problems (8pts Each)

A1. Find the limits, if they exist (just a computation is expected):
a) $\lim _{x \rightarrow-2} \frac{x^{2}-3 x-10}{x+2}$
b) $\lim _{x \rightarrow \infty}(\sqrt{x+7}-\sqrt{x+3})$.

A2. Does $\lim _{x \rightarrow \infty} \frac{\sin x+\cos x}{x}$ exist? If yes, find it, if not, justify.
A3. Show that $\lim _{x \rightarrow-1} \cos \frac{1}{x+1}$ does not exist.
A4. Use the definition to show that $\lim _{x \rightarrow 3}(2 x+1)=7$.
A5. Let $f(x) \geq 0$ and $L=\lim _{x \rightarrow c} f(x)$. Use the definition to show that $L \geq 0$, by showing that $L \geq-\epsilon$ for every $\epsilon>0$.

Type B problems (8pts Each)

B1. Use the definition to show that $\lim _{x \rightarrow c} \frac{1}{x^{2}+4}=\frac{1}{c^{2}+4}$.
B2. Use the definition to prove the extended limit law $\infty+\infty=\infty$, that is, if $\lim _{x \rightarrow c} f(x)=\infty$ and $\lim _{x \rightarrow c} g(x)=\infty$, show that $\lim _{x \rightarrow c}(f(x)+g(x))=\infty$.

B3. Suppose $f(x), g(x)>0, \lim _{x \rightarrow c} f(x) g(x)=L$ and $\lim _{x \rightarrow c} f(x)=0$. Show that $\lim _{x \rightarrow c} g(x)=\infty$.
B4. Find all the cluster points (in \mathbf{R}) of the set $(-\sqrt{2}, \sqrt{2}) \cap \mathbf{Q}$. You do not need to write a detailed proof, but justify your answer with a picture and a few words. Justify also why certain points are not cluster points of the set.

B5. Use the definition and properties of the sine function to show that $\lim _{x \rightarrow c} \sin x=\sin c$. You will find the formula $\sin u-\sin v=2 \sin \frac{u-v}{2} \cos \frac{u+v}{2}$ useful.

B6. Suppose $f, g:(a, \infty) \rightarrow \mathbf{R}$, and $\lim _{x \rightarrow \infty} f(x)=L$ and $\lim _{x \rightarrow L} g(x)=\infty$. Show that $\lim _{x \rightarrow \infty} f(g(x))=L$.

B7. Use a picture of the unit circle and areas to show that $\lim _{\theta \rightarrow 0} \cos \theta=1$ by showing that $\lim _{\theta \rightarrow 0}(1-\cos \theta)=0$.

Type C problems (12pts Each)

C1. Let $f:(0, \infty) \rightarrow \mathbf{R}, f(x)=0$ if x is irrational, $f(x)=\frac{1}{n}$ if x is a rational number represented by $\frac{m}{n}$ in reduced form. Show that for every $c, \lim _{x \rightarrow c} f(x)=0$.
Hint: show that in an open interval of width $\frac{1}{n}$ there are only finitely many rational numbers x so that $f(x)>\frac{1}{n}$ and take it from there.

