Advanced Calculus 1 - Final Exam MAT 525/625, Fall 2014 - D. Ivanšić

Name: Show all your work!

Do all the theory problems. Then do at least five problems, at least two of which are of type B or C. If you do more than five, best five will be counted.

Theory 1. (3pts) Define the supremum of a set.
Theory 2. (3pts) Define what $\lim _{x \rightarrow \infty} f(x)=L$ means.
Theory 3. (3pts) State the Bolzano-Weierstrass theorem for sequences.

Type A problems (5pts Each)

A1. If they exist, find a lower bound of S, an upper bound of $S, \inf S$ and $\sup S$. There is no need to justify. \quad a) $S=\mathbf{Q} \cap[\sqrt{5}, 7) \quad$ b) $S=\left\{\left.\frac{(-1)^{n}}{n}+\frac{(-1)^{m}}{m} \right\rvert\, n, m \in \mathbf{N}\right\}$
A2. Use the definition of the limit to show $\lim \frac{2 n-4}{5 n+2}=\frac{2}{5}$.
A3. Establish convergence or divergence of $x_{n}=\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n+2}}+\cdots+\frac{1}{\sqrt{2 n}}$.
A4. Find the limits, if they exist (just a computation is expected):
a) $\lim _{x \rightarrow \infty} \frac{x-4}{\sqrt{x}-7}$
b) $\lim _{x \rightarrow 0+} \frac{\sqrt{5 x+1}-1}{x^{2}}$.

A5. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function given by: $f(x)=x$, if x is rational, $f(x)=x^{2}$ if x is irrational. Find $\lim _{x \rightarrow 0} f(x)$ if it exists.

A6. Prove the extended limit law $\infty \cdot \infty=\infty$, where $L>0$, that is, if $\lim _{x \rightarrow c} f(x)=\infty$ and $\lim _{x \rightarrow c} g(x)=\infty$, show that $\lim _{x \rightarrow c}(f(x) g(x))=\infty$.

Type B problems (8pts Each)

B1. Let A be countable and B uncountable. Prove that $A \backslash B$ is countable and $B \backslash A$ is uncountable.

B2. Let S be a nonempty set that is bounded above. Show that $\sup S^{3}=(\sup S)^{3}$. (As expected, $S^{3}=\left\{s^{3} \mid s \in S\right\}$.)

B3. Let the sequence x_{n} be recursively given by: $x_{1}=2, x_{n+1}=5-\frac{2}{x_{n}}$. Show that this sequence converges and find its limit.
B4. Use the definition to show that the sequence $x_{n}=\frac{n^{2}}{n^{2}+1}$ is Cauchy.
B5. Find $\lim \left(1+\frac{1}{n^{2}}\right)^{n}$ and justify your reasoning. While this problem may be done fairly easily with "calculus 1 " techniques, make sure you use only arguments we established (ask if unsure).

B6. Use the definition to show that $\lim _{x \rightarrow c}\left(x^{3}+3 x^{2}-5 x+1\right)=c^{3}+3 c^{2}-5 c+1$ for any $c \in \mathbf{R}$.

B7. Suppose $A \subseteq \mathbf{R}$ is a bounded set. If $\sup A \notin A$, show $\sup A$ is a cluster point of A. What can you say if $\sup A \in A$?

Type C problems (12PTS Each)

$\mathbf{C 1}$. Show that the set of all functions $\mathbf{N} \rightarrow\{0,1\}$ is uncountable. Hint: any function $a: \mathbf{N} \rightarrow\{0,1\}$ may be thought of as a sequence of 0 's and 1 's.
$\mathbf{C 2}$. Let the sequence x_{n} be recursively given by: $x_{1}>0, x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{5}{x_{n}}\right)$.
a) Show for any $a>0: \frac{1}{2}\left(a+\frac{5}{a}\right) \geq \sqrt{5}$.
b) Show that x_{n} is a contractive sequence (part a) will help).
c) Find $\lim x_{n}$ if it exists.

